如圖所示,已知是半徑為1,圓心角為的扇形,是扇形弧上的動(dòng)點(diǎn),,交于點(diǎn),,交于點(diǎn).記.
(1).若,如圖3,當(dāng)角取何值時(shí),能使矩形的面積最大;
(2).若,如圖4,當(dāng)角取何值時(shí),能使平行四邊形的面積最大.并求出最大面積.
(1)  ;(2) 當(dāng)時(shí),平行四邊形的面積最大,

試題分析:(1)由任意角三角函數(shù)定義可知,則,所以,根據(jù)三角函數(shù)圖像求最值.(2) 過A作AH⊥OP,垂足為H.則.由任意角三角函數(shù)定義可知,用分別表示出的值.將化簡變形后根據(jù)三角函數(shù)圖像求其最值.
試題解析:解
(1)如圖,連結(jié),設(shè),矩形的面積為S,則.
所以,                                 2分
當(dāng),即時(shí),                          
所以矩形的面積最大時(shí),;                               4分 
(2)如圖,連結(jié),設(shè),過,垂足為

中,.
中,所以
所以
設(shè)平行四邊形的面積為,則
==
==                      8分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054650478648.png" style="vertical-align:middle;" />   所以 所以當(dāng),即時(shí),,
所以當(dāng)時(shí),平行四邊形的面積最大,.             12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某市新體育公園的中心廣場平面圖如圖所示,在y軸左側(cè)的觀光道曲線段是函數(shù),時(shí)的圖象且最高點(diǎn)B(-1,4),在y軸右側(cè)的曲線段是以CO為直徑的半圓弧.⑴試確定A,的值;⑵現(xiàn)要在右側(cè)的半圓中修建一條步行道CDO(單位:米),在點(diǎn)C與半圓弧上的一點(diǎn)D之間設(shè)計(jì)為直線段(造價(jià)為2萬元/米),從D到點(diǎn)O之間設(shè)計(jì)為沿半圓弧的弧形(造價(jià)為1萬元/米).設(shè)(弧度),試用來表示修建步行道的造價(jià)預(yù)算,并求造價(jià)預(yù)算的最大值?(注:只考慮步行道的長度,不考慮步行道的寬度)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,已知
sin2A+sin2B-sin2C
sin2A-sin2B+sin2C
=
1+cos2C
1+cos2B
,求△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在△ABC中,若acosA+bcosB=ccosC,則△ABC的形狀是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知銳角△ABC中內(nèi)角A,B,C的對邊分別為a,b,c,且c=6,向量
s
=(2sinC,-
3
),
t
=(cos2C,2cos2
C
2
-1),且
s
t

(1)求C的大。
(2)若sinA=
1
3
,求sin(
π
3
-B)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知
(1)若,求的取值構(gòu)成的集合.
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2012•廣東)已知函數(shù)(其中ω>0,x∈R)的最小正周期為10π.
(1)求ω的值;
(2)設(shè),,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若在△ABC中,有,則△ABC一定是      ( )
A.銳角三角形B.鈍角三角形C.直角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=cos2(x-)-sin2x.
(1)求f()的值.
(2)若對于任意的x∈[0,],都有f(x)≤c,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案