“” 是“直線與直線平行” 的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省河西五市高三第一次聯(lián)考數(shù)學(xué)理卷 題型:選擇題
“”是“直線與直線互相垂直”的
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆湖北省高一下學(xué)期期末聯(lián)考數(shù)學(xué) 題型:選擇題
以下命題中正確的是 ( )
A.恒成立;
B.在中,若,則是等腰三角形;
C.對等比數(shù)列的前n項和若對任意正整數(shù)n都有對任意正整數(shù)n恒成立;
D.=3是直線與直線平行且不重合的充要條件;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省武漢二中、龍泉中學(xué)高一下學(xué)期期末聯(lián)考數(shù)學(xué) 題型:單選題
以下命題中正確的是 ( )
A.恒成立; |
B.在中,若,則是等腰三角形; |
C.對等比數(shù)列的前n項和若對任意正整數(shù)n都有對任意正整數(shù)n恒成立; |
D.=3是直線與直線平行且不重合的充要條件; |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(課標(biāo)卷解析版) 題型:解答題
設(shè)拋物線:(>0)的焦點為,準(zhǔn)線為,為上一點,已知以為圓心,為半徑的圓交于,兩點.
(Ⅰ)若,的面積為,求的值及圓的方程;
(Ⅱ)若,,三點在同一條直線上,直線與平行,且與只有一個公共點,求坐標(biāo)原點到,距離的比值.
【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點到直線距離公式、線線平行等基礎(chǔ)知識,考查數(shù)形結(jié)合思想和運(yùn)算求解能力.
【解析】設(shè)準(zhǔn)線于軸的焦點為E,圓F的半徑為,
則|FE|=,=,E是BD的中點,
(Ⅰ) ∵,∴=,|BD|=,
設(shè)A(,),根據(jù)拋物線定義得,|FA|=,
∵的面積為,∴===,解得=2,
∴F(0,1), FA|=, ∴圓F的方程為:;
(Ⅱ) 解析1∵,,三點在同一條直線上, ∴是圓的直徑,,
由拋物線定義知,∴,∴的斜率為或-,
∴直線的方程為:,∴原點到直線的距離=,
設(shè)直線的方程為:,代入得,,
∵與只有一個公共點, ∴=,∴,
∴直線的方程為:,∴原點到直線的距離=,
∴坐標(biāo)原點到,距離的比值為3.
解析2由對稱性設(shè),則
點關(guān)于點對稱得:
得:,直線
切點
直線
坐標(biāo)原點到距離的比值為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com