已知平行六面體ABCD—A1B1C1D1中,以頂點(diǎn) A為端點(diǎn)的三條棱  長(zhǎng)都等于1,兩兩夾角都是60°,求對(duì)角線AC1的長(zhǎng)度. (10分)

 

【答案】

.

【解析】

試題分析:先選為一組基向量,然后可表示出,然后再利用求長(zhǎng)度.

,∴

1+1+1+2×1×1×cos60°+2×1×1×cos60°+2×1×1×cos60°=6.  ∴.

考點(diǎn):利用向量求長(zhǎng)度.

點(diǎn)評(píng):利用向量求長(zhǎng)度,要先選一組合適的基底,標(biāo)準(zhǔn)是這組基底的任意兩個(gè)向量的數(shù)量積可求,并且每個(gè)向量的?芍,然后其它向量都用這一組基向量表示,再利用求長(zhǎng)度.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平行六面體ABC-A1B1C1的底面為正方形,O1,O分別為上、下底面中心,且A1在底面ABCD上的射影為O.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點(diǎn)E、F分別在棱AA1、BC上,且AE=2EA1,問(wèn)F在何處時(shí),EF⊥AD?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知平行六面體ABCD-A1B1C1D1
(I)若G為△ABC的重心,
A1M
=3
MG
,設(shè)
AB
=a,
AD
=b,
AA1
=c
,用向量a、b、c表示向量
A1M

(II)若平行六面體ABCD-A1B1C1D1各棱長(zhǎng)相等且AB⊥平面BCC1B1,E為CD中點(diǎn),AC1∩BD1=O,求證;OE⊥平面ABC1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知平行六面體ABC-A1B1C1的底面為正方形,O1,O分別為上、下底面中心,且A1在底面ABCD上的射影為O.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點(diǎn)E、F分別在棱AA1、BC上,且AE=2EA1,問(wèn)F在何處時(shí),EF⊥AD?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知平行六面體ABCD-A1B1C1D1
(I)若G為△ABC的重心,數(shù)學(xué)公式,設(shè)數(shù)學(xué)公式,用向量a、b、c表示向量數(shù)學(xué)公式
(II)若平行六面體ABCD-A1B1C1D1各棱長(zhǎng)相等且AB⊥平面BCC1B1,E為CD中點(diǎn),AC1∩BD1=O,求證;OE⊥平面ABC1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省蕪湖一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,已知平行六面體ABC-A1B1C1的底面為正方形,O1,O分別為上、下底面中心,且A1在底面ABCD上的射影為O.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點(diǎn)E、F分別在棱AA1、BC上,且AE=2EA1,問(wèn)F在何處時(shí),EF⊥AD?

查看答案和解析>>

同步練習(xí)冊(cè)答案