【題目】當急需住院人數超過醫(yī)院所能收治的病人數量時就會發(fā)生“醫(yī)療資源擠兌”現象,在新冠肺炎爆發(fā)期間,境外某市每日下班后統(tǒng)計住院人數,從中發(fā)現:該市每日因新冠肺炎住院人數均比前一天下班后統(tǒng)計的住院人數增加約25%,但每日大約有200名新冠肺炎患者治愈出院,已知該市某天下班后有1000名新冠肺炎患者住院治療,該市的醫(yī)院共可收治4000名新冠肺炎患者,若繼續(xù)按照這樣的規(guī)律發(fā)展,該市因新冠肺炎疫情發(fā)生“醫(yī)療資源擠兌”現象,只需要約( )
參考數據:.
A.7天B.10天C.13天D.16天
科目:高中數學 來源: 題型:
【題目】某農科院為試驗冬季晝夜溫差對反季節(jié)大豆新品種發(fā)芽的影響,對溫差與發(fā)芽率之間的關系進行統(tǒng)計分析研究,記錄了6天晝夜溫差與實驗室中種子發(fā)芽數的數據如下:
日期 | 1月1日 | 1月2日 | 1月3日 | 1月4日 | 1月5日 | 1月6日 |
溫差(攝氏度) | 10 | 11 | 12 | 13 | 8 | 9 |
發(fā)芽數(粒) | 26 | 27 | 30 | 32 | 21 | 24 |
他們確定的方案是先從這6組數據中選出2組,用剩下的4組數據求回歸方程,再用選取的兩組數據進行檢驗.
(1)求選取的2組數據恰好是相鄰2天數據的概率;
(2)若由線性回歸方程得到的估計數據與實際數據的誤差不超過1粒,則認為得到的線性回歸方程是可靠的.請根據1月2,3,4,5日的數據求出關于的線性回歸方程(保留兩位小數),并檢驗此方程是否可靠.
參考公式:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了檢測生產線上某種零件的質量,從產品中隨機抽取100個零件,測量其尺寸,得到如圖所示的頻率分布直方圖.若零件尺寸落在區(qū)間之內,則認為該零件合格,否則認為不合格.其中,分別表示樣本的平均值和標準差,計算得(同一組中的數據用該組區(qū)間的中點值作代表).
(1)已知一個零件的尺寸是,試判斷該零件是否合格;
(2)利用分層抽樣的方法從尺寸在的樣本中抽取6個零件,再從這6個零件中隨機抽取2個,求這2個零件中恰有1個尺寸小于的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】時代悄然來臨,為了研究中國手機市場現狀,中國信通院統(tǒng)計了2019年手機市場每月出貨量以及與2018年當月同比增長的情況,得到如下統(tǒng)計圖,根據該統(tǒng)計圖,下列說法錯誤的是( )
A.2019年全年手機市場出貨量中,5月份出貨量最多
B.2019年下半年手機市場各月份出貨量相對于上半年各月份波動小
C.2019年全年手機市場總出貨量低于2018年全年總出貨量
D.2018年12月的手機出貨量低于當年8月手機出貨量
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓與圓相外切,且與直線相切.
(1)記圓心的軌跡為曲線,求的方程;
(2)過點的兩條直線與曲線分別相交于點和,線段和的中點分別為.如果直線與的斜率之積等于1,求證:直線經過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】動點與定點的距離和該動點到直線的距離的比是常數.
(1)求動點軌跡方程;
(2)已知點,問在軸上是否存在一點,使得過點的任一條斜率不為0的弦交曲線于兩點,都有.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點為的坐標滿足圓方程,且圓心滿足.
(1)求橢圓的方程;
(2)過點的直線交橢圓于、兩點,過與垂直的直線交圓于、兩點,為線段中點,若的面積 ,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中記載:將底面為直角三角形的直三棱柱稱為塹堵,將一塹堵沿其一頂點與相對的棱剖開,得到一個陽馬(底面是長方形,且有一條側棱與底面垂直的四棱錐)和一個鱉臑(四個面均為直角三角形的四面體).在如圖所示的塹堵中,且有鱉臑C1-ABB1和鱉臑,現將鱉臑沿線BC1翻折,使點C與點B1重合,則鱉臑經翻折后,與鱉臑拼接成的幾何體的外接球的表面積是______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com