已知方向向量為的直線過橢圓C:=1(a>b>0)的焦點以及點(0,),橢圓C的中心關于直線的對稱點在橢圓C的右準線上。
⑴求橢圓C的方程。
⑵過點E(-2,0)的直線交橢圓C于點M、N,且滿足,(O為坐標原點),求直線的方程。
(1)橢圓C的方程為
(2)直線的方程為
⑴直線①,過原點垂直于的直線方程為②
解①②得,∵橢圓中心O(0,0)關于直線的對稱點在橢圓C的右準線上,
∴, …………………(2分)
∵直線過橢圓焦點,∴該焦點坐標為(2,0),∴,
故橢圓C的方程為 ③…………………(4分)
⑵當直線的斜率存在時,設 ,代入③并整理得
,設,
則……………(5分)
∴,……(7分)
點到直線的距離.
∵,即,
又由 得 ,
∴,…………………………(9分)
而,∴,即,
解得,此時 …………………………………(11分)
當直線的斜率不存在時,,也有,
經檢驗,上述直線均滿足,
故直線的方程為
科目:高中數學 來源: 題型:
(05年福建卷)(12分)
已知方向向量為的直線l過點(0,-2)和橢圓C:的焦點,且橢圓C的中心關于直線l的對稱點在橢圓C的右準線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過點E(-2,0)的直線m交橢圓C于點M、N,滿足,
cot∠MON≠0(O為原點).若存在,求直線m的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
已知方向向量為的直線l過點()和橢圓的焦點,且橢圓C的中心關于直線l的對稱點在橢圓C的右準線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過點E(-2,0)的直線m交橢圓C于點M、N,滿足=,cot∠MON≠0(O為原點).若存在,求直線m的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年河北省高三上學期2月月考理科數學試卷 題型:解答題
已知方向向量為的直線l過橢圓的焦點以及點(0,),直線l與橢圓C交于 A 、B兩點,且A、B兩點與另一焦點圍成的三角形周長為。
(1)求橢圓C的方程
(2)過左焦點且不與x軸垂直的直線m交橢圓于M、N兩點,(O坐標原點),求直線m的方程
查看答案和解析>>
科目:高中數學 來源: 題型:
已知方向向量為的直線點和橢圓的焦點,且橢圓C的中心關于直線的對稱點在橢圓C的右準線上。
(1)求橢圓C的方程
(2)是否存在過點的直線交橢圓C于點M,N且滿足
(O為原點),若存在求出直線的方程,若不存在說明理由。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com