定義在R上的函數(shù)f(x)滿足,對(duì)任x、y∈R均有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)>0,f(2)=4,則f(x)在[-2012,-100]上的最大值為
-200
-200
分析:通過賦值法,可證得y=f(x)為奇函數(shù),且在R上單調(diào)遞增,f(-2n)=nf(-2),從而可求得f(x)在[-2012,-100]上的最大值.
解答:解:令x=y=0得:f(0+0)=f(0)+f(0),
∴f(0)=0;
令y=-x得f(-x)+f(x)=f(0)=0,即f(-x)=-f(x),
∴y=f(x)為奇函數(shù);
∵當(dāng)x>0時(shí),f(x)>0,
∴當(dāng)x1<x2時(shí),x2-x1>0,f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1)>0,
∴y=f(x)在R上單調(diào)遞增.
∴f(x)在[-2012,-100]上的最大值為f(-100).
∵f(2)=4,
∴f(-2)=-4,
∴f(-2-2)=f(-2)+f(-2)=2f(-2)=-4,即f(-4)=-8,
同理可得f(-6)=3f(-2)=-12
…,
f(-2n)=nf(-2),
∴f(-100)=50f(-2)=-200.
∴f(x)在[-2012,-100]上的最大值為-200.
故答案為:-200.
點(diǎn)評(píng):本題考查抽象函數(shù)及其應(yīng)用,著重考查賦值法的應(yīng)用,考查函數(shù)奇偶性與單調(diào)性的判定,考查轉(zhuǎn)化思想與推理運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈[0,
π
2
]時(shí),f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當(dāng)x∈(0,4)時(shí),f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個(gè)最低點(diǎn)之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對(duì)稱中心都在f(x)圖象的對(duì)稱軸上.
(1)求f(x)的表達(dá)式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對(duì)應(yīng)值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點(diǎn)的區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案