已知函數(shù)f(x)=log2(2x-1),
(1)求f(x)的定義域;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明.
分析:(1)根據(jù)使函數(shù)的解析式有意義的原則,結(jié)合對(duì)數(shù)函數(shù)的真數(shù)部分必須大于0,可以構(gòu)造關(guān)于x的不等式,可得函數(shù)的定義域;
(2)取x1,x2∈(0,+∞)且x1<x2,根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)及指數(shù)函數(shù)的性質(zhì),判斷出f(x1),f(x2)的大小,結(jié)合函數(shù)單調(diào)性的定義可得函數(shù)的單調(diào)性.
解答:解:(1)要使函數(shù)f(x)=log2(2x-1)的解析式有意義
自變量必須滿(mǎn)足2x-1>0
即2x>1=20
∴x>0,
即f(x)的定義域?yàn)閧x|x>0}---------(5分)
(2)f(x)的在定義域內(nèi)為增函數(shù).理由如下:
設(shè)x1,x2∈(0,+∞)且x1<x2,
f(x1)-f(x2)=lo
g
(2x1-1)
2
-lo
g
(2x2-1)
2
=lo
g
2x1-1
2x2-1
2
-----------------(8分)
∵x2>x1>0
2x22x1>1
2x2-1>2x1-1>0
2x1-1
2x2-1
<1
------------------------------------(10分)
f(x1)-f(x2)<0,
即f(x1)<f(x2),
即函數(shù)f(x)為定義域內(nèi)增函數(shù)--------------------(12分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是對(duì)數(shù)函數(shù)的圖象和性質(zhì),函數(shù)的定義域及函數(shù)的單調(diào)性,其中熟練掌握函數(shù)定義域的求法及函數(shù)單調(diào)性的證明方法是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數(shù)f(x)在P(0,f(0))的切線(xiàn)方程為y=5x+1,求實(shí)數(shù)a,b的值:
(2)當(dāng)a<3時(shí),令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點(diǎn)P(2,f(2))處的切線(xiàn)方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達(dá)式和切線(xiàn)l的方程;
(2)當(dāng)x∈[
1
e
,e]
時(shí)(其中e=2.71828…),不等式f(x)<k恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
x2+a
(a為常數(shù)),直線(xiàn)l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
(1)求直線(xiàn)l的方程及a的值;
(2)當(dāng)k>0時(shí),試討論方程f(1+x2)-g(x)=k的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
13
x3+x2+ax

(1)討論f(x)的單調(diào)性;
(2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1,x2,若過(guò)兩點(diǎn)(x1,f(x1)),(x2,f(x2))的直線(xiàn)l與x軸的交點(diǎn)在曲線(xiàn)y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實(shí)數(shù),x∈R,a∈R.
(1)當(dāng)1<a<2時(shí),若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過(guò)點(diǎn)P(2,1)且與曲線(xiàn)f(x)相切的直線(xiàn)l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案