(本小題滿分16分)   已知二次函數(shù)。 (1)若是否存在為正數(shù) ,若存在,證明你的結(jié)論,若不存在,說明理由;(2)若對有2個不等實(shí)根,證明必有一個根屬于(3)若,是否存在的值使=成立,若存在,求出的取值范圍,若不存在,說明理由。

  

  (1)略(2)略(3)


解析:

(1)因為

         ∵

    ∴可得,

假設(shè)存在,由題意,則

    因為

    即  存在這樣的

   (2)令

   

 

的根必有一個屬于

(3)由=0,∴

,得方程,解得:=0,=,

又由得:

 或      (*)

由題意(*)式的解為0或或無解,

當(dāng)(*)式的解為0時,可解得,經(jīng)檢驗符合題意;

當(dāng)(*)式的解為時,可解得,經(jīng)檢驗符合題意;

當(dāng)(*)式無解時,,即

綜上可知,當(dāng)時滿足題意。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010江蘇卷)18、(本小題滿分16分)

在平面直角坐標(biāo)系中,如圖,已知橢圓的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F。設(shè)過點(diǎn)T()的直線TA、TB與橢圓分別交于點(diǎn)M、,其中m>0,。

(1)設(shè)動點(diǎn)P滿足,求點(diǎn)P的軌跡;

(2)設(shè),求點(diǎn)T的坐標(biāo);

(3)設(shè),求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年泰州中學(xué)高一下學(xué)期期末測試數(shù)學(xué) 題型:解答題

(本小題滿分16分)
函數(shù)(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,對任意時,恒成立,求實(shí)數(shù)的范圍;
(Ⅲ)如果,當(dāng)“對任意恒成立”與“內(nèi)必有解”同時成立時,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇大豐新豐中學(xué)高二上期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)     本題請注意換算單位

某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元。

(1)若該寫字樓共x層,總開發(fā)費(fèi)用為y萬元,求函數(shù)y=f(x)的表達(dá)式;

(總開發(fā)費(fèi)用=總建筑費(fèi)用+購地費(fèi)用)

(2)要使整幢寫字樓每平方米開發(fā)費(fèi)用最低,該寫字樓應(yīng)建為多少層?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)設(shè)命題:方程無實(shí)數(shù)根; 命題:函數(shù)

的值域是.如果命題為真命題,為假命題,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省高一第三階段檢測數(shù)學(xué)卷 題型:解答題

(本小題滿分16分)

已知函數(shù)f(x)=為偶函數(shù),且函數(shù)yf(x)圖象的兩相鄰對稱軸間的距離為

(Ⅰ)求f)的值;

(Ⅱ)將函數(shù)yf(x)的圖象向右平移個單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)延長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)yg(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

 

查看答案和解析>>

同步練習(xí)冊答案