【題目】按下列要求分配6本不同的書,各有多少種不同的分配方式?

(1)分成三份,1份1本,1份2本,1份3本;

(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;

(3)平均分成三份,每份2本;

(4)平均分配給甲、乙、丙三人,每人2本;

(5)分成三份,1份4本,另外兩份每份1本;

(6)甲、乙、丙三人中,一人得4本,另外兩人每人得1本;

(7)甲得1本,乙得1本,丙得4本.

【答案】(1)60;(2)360;(3)15;(4)90;(5)15;(6)90;(7)70

【解析】

(1)根據(jù)組合問題,分步依次選出三種選法,相乘即可得到總的方法數(shù)。

(2)根據(jù)組合,先求出三種符合要求的算法。再對三種進行全排列即可。

(3)列出分成三組的不同組合數(shù),注意去掉重復(fù)的情況。

(4)分成三組的不同組合數(shù),去掉重復(fù)情況后,再對三組進行全排列即可。

(5)根據(jù)組合特征,求得分組情況,去掉重復(fù)部分即可。

(6)利用組合求得分組情況,并去掉重復(fù)部分后,對三組進行全排列。

(7)根據(jù)排列數(shù)計算,得到無重復(fù)的無序組數(shù)。

(1)無序不均勻分組問題.先選本有種選法;再從余下的本中選本有種選法;最后余下的本全選有種選法.故共有 ()選法.

(2)有序不均勻分組問題.由于甲、乙、丙是不同三人,題的基礎(chǔ)上,還應(yīng)考慮再分配,共有.

(3)無序均勻分組問題.先分三步,則應(yīng)是種選法,但是這里出現(xiàn)了重復(fù).不妨記六本書為,,,,,,若第一步取了,第二步取了,第三步取了,記該種分法為(,,),種分法中還有(,,),(,,),(,,),(,,),(,,),共有種情況,而這種情況僅是,,的順序不同,因此只能作為一種分法,故分配方式有.

(4)有序均勻分組問題.題的基礎(chǔ)上再分配給個人,共有分配方式 ().

(5)無序部分均勻分組問題.共有 ()分法.

(6)有序部分均勻分組問題.題的基礎(chǔ)上再分配給個人,共有分配方式 ().

(7)直接分配問題.甲選本有種選法,乙從余下本中選本有種選法,余下本留給丙有種選法,共有 ()選法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在公差不為0的等差數(shù)列{an}中,a1+a5=ap+aq , 記 + 的最小值為m,若數(shù)列{bn}滿足bn>0,b1= m,bn+1是1與 的等比中項,若bn 對任意n∈N*恒成立,則s的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在空間四邊形ABCD(A,B,C,D不共面)中,一個平面與邊AB,BC,CD,DA分別交于E,F(xiàn),G,H(不含端點),則下列結(jié)論錯誤的是(

A.若AE:BE=CF:BF,則AC∥平面EFGH
B.若E,F(xiàn),G,H分別為各邊中點,則四邊形EFGH為平行四邊形
C.若E,F(xiàn),G,H分別為各邊中點且AC=BD,則四邊形EFGH為矩形
D.若E,F(xiàn),G,H分別為各邊中點且AC⊥BD,則四邊形EFGH為矩形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為, 為參數(shù)),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為,若直線與曲線相切;

(1)求曲線的極坐標方程;

(2)在曲線上取兩點 與原點構(gòu)成,且滿足,求面積的最大值.

【答案】(1);(2)

【解析】試題分析:(1)利用極坐標與直角坐標的互化公式可得直線的直角坐標方程為,

,消去參數(shù)可知曲線是圓心為,半徑為的圓,由直線與曲線相切,可得: ;則曲線C的方程為, 再次利用極坐標與直角坐標的互化公式可得

可得曲線C的極坐標方程.

(2)由(1)不妨設(shè)M(),,(),

,

,

由此可求面積的最大值.

試題解析:(1)由題意可知直線的直角坐標方程為

曲線是圓心為,半徑為的圓,直線與曲線相切,可得: ;可知曲線C的方程為,

所以曲線C的極坐標方程為,

.

(2)由(1)不妨設(shè)M(),,(),

,

當(dāng) 時,

所以△MON面積的最大值為.

型】解答
結(jié)束】
23

【題目】已知函數(shù)的定義域為;

(1)求實數(shù)的取值范圍;

(2)設(shè)實數(shù)的最大值,若實數(shù) , 滿足,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , Sn=n2+n.
(Ⅰ)求{an}的通項公式an;
(Ⅱ)若ak+1 , a2k , a2k+3(k∈N*)恰好依次為等比數(shù)列{bn}的第一、第二、第三項,求數(shù)列{ }的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量a=(1,sin x),b=,函數(shù)f(x)=a·b-cos 2x.

(1)求函數(shù)f(x)的解析式及其單調(diào)遞增區(qū)間;

(2)當(dāng)x,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一同學(xué)在電腦中打出若干個圈:○●○○●○○○●○○○○●○○○○○●若將此若干個圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前2012個圈中的●的個數(shù)是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年6月14日,第二十一屆世界杯足球賽將在俄羅斯拉開帷幕.為了了解喜愛足球運動是否與性別有關(guān),某體育臺隨機抽取100名觀眾進行統(tǒng)計,得到如下列聯(lián)表.

(1)將列聯(lián)表補充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認為喜愛足球運動與性別有關(guān)?

(2)在不喜愛足球運動的觀眾中,按性別分別用分層抽樣的方式抽取6人,再從這6人中隨機抽取2人參加一臺訪談節(jié)目,求這2人至少有一位男性的概率.

查看答案和解析>>

同步練習(xí)冊答案