一邊長(zhǎng)為a的正方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)均為x的小正方形,然后做成一個(gè)無(wú)蓋方盒.
(1)試把方盒的容積V表示為x的函數(shù);
(2)x多大時(shí),方盒的容積V最大?
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,函數(shù)解析式的求解及常用方法
專題:應(yīng)用題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)由于在邊長(zhǎng)為a的正方形鐵片的四角截去四個(gè)邊長(zhǎng)為x的小正方形,做成一個(gè)無(wú)蓋方盒,所以無(wú)蓋方盒的底面是正方形,且邊長(zhǎng)為a-2x,高為x,從而寫出函數(shù)表達(dá)式;
(2)求導(dǎo)V′(x)=12x2-8ax+a2=(6x-a)(2x-a),由導(dǎo)數(shù)可得在x=
a
6
時(shí)函數(shù)V(x)有最大值.
解答: 解:(1)由于在邊長(zhǎng)為a的正方形鐵片的四角截去四個(gè)邊長(zhǎng)為x的小正方形,做成一個(gè)無(wú)蓋方盒,
所以無(wú)蓋方盒的底面是正方形,且邊長(zhǎng)為a-2x,高為x,
則無(wú)蓋方盒的容積V(x)=(a-2x)2x,0<x<
a
2
;
(2)∵V(x)=(a-2x)2x=4x3-4ax2+a2x,0<x<
a
2
;
∴V′(x)=12x2-8ax+a2=(6x-a)(2x-a),
∴當(dāng)x∈(0,
a
6
)時(shí),V′(x)>0;
當(dāng)x∈(
a
6
,
a
2
)時(shí),V′(x)<0;
故x=
a
6
是函數(shù)V(x)的最大值點(diǎn),
即當(dāng)x=
a
6
時(shí),方盒的容積V最大.
點(diǎn)評(píng):本題考查了學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題的能力及導(dǎo)數(shù)在求最值時(shí)的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
9
-
y2
16
=1的左右焦點(diǎn)分別為F1、F2,O為雙曲線的中心,P是雙曲線右支上的點(diǎn)△PF1F2的內(nèi)切圓的圓心為I,且圓I與x軸相切于點(diǎn)A,過(guò)F2作直線PI的垂線,垂足為B,則|OA|•|OB|=(  )
A、3B、9C、25D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
sinα+cosα
2sinα-cosα
=2,則tanα的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=
1
6
x3+
1
2
(a-2)x2,h(x)=2alnx,f(x)=g′(x)-h(x).
(1)g(x)在(1,2)單調(diào)遞增,求a的取值范圍.
(2)當(dāng)a∈R時(shí),討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

光線通過(guò)一塊玻璃,其強(qiáng)度要損失10%,把幾塊這樣的玻璃重疊起來(lái),設(shè)光線原來(lái)的強(qiáng)度為k,通過(guò)x塊玻璃以后強(qiáng)度為y.
(1)寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)通過(guò)多少塊玻璃以后,光線強(qiáng)度減弱到原來(lái)的
1
4
以下.
(參考數(shù)據(jù):lg2≈0.3010,lg3≈0.4771)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn,且滿足
S4≥10
S5≤15
(*)
,
(1)試用a1,d表示不等式組(*),并在給定的坐標(biāo)系中用陰影畫出不等式組表示的平面區(qū)域;
(2)求a4的最大值,并指出此時(shí)數(shù)列{an}的公差d的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)欲建造一個(gè)無(wú)蓋的長(zhǎng)方體水池,其長(zhǎng)、寬、高分別為a、a、b,且a2•b=3,已知底面的單位造價(jià)為150元,四壁的單位造價(jià)為100元,
(1)試求無(wú)蓋的長(zhǎng)方體水池的總造價(jià)y表示為a的函數(shù);
(2)當(dāng)a為何值時(shí),總價(jià)y取得最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=xlnx,若f′(x0)=2,則x0等于( 。
A、e2
B、e
C、
ln2
2
D、ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=-
1
4
an+1=1-
1
an
,則a2009=( 。
A、
4
5
B、5
C、-
1
4
D、
1
5

查看答案和解析>>

同步練習(xí)冊(cè)答案