已知.
(1)已知函數(shù)h(x)=g(x)+ax3的一個(gè)極值點(diǎn)為1,求a的取值;
(2) 求函數(shù)在上的最小值;
(3)對(duì)一切,恒成立,求實(shí)數(shù)a的取值范圍.
(1).(2). (3
解析試題分析:(1),因?yàn)?為極值點(diǎn),
則滿足,所以. 4分
(2),當(dāng),,單調(diào)遞減,
當(dāng)時(shí),,單調(diào)遞增. 6分
① ,t無(wú)解;
② ,即時(shí),;
③ ,即時(shí),在上單調(diào)遞增,;
所以. 8分
(3),則,設(shè), 10分
則,
,,單調(diào)遞減,
,,單調(diào)遞增,所以,
因?yàn)閷?duì)一切,恒成立,所以; 12分
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):此類問(wèn)題是在知識(shí)的交匯點(diǎn)處命題,將函數(shù)、導(dǎo)數(shù)、不等式、方程的知識(shí)融合在一起進(jìn)行考查,重點(diǎn)考查了利用導(dǎo)數(shù)研究函數(shù)的極值與最值等知識(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
若函數(shù)在和處取得極值,試求的值;
在(1)的條件下,當(dāng)時(shí),恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)為大于零的常數(shù)。
(1)若函數(shù)內(nèi)調(diào)遞增,求a的取值范圍;
(2)求函數(shù)在區(qū)間[1,2]上的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)在及時(shí)取得極值.
(1)求、b的值;
(2)若對(duì)于任意的,都有成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
(1)求函數(shù)在上的最小值;
(2)若函數(shù)與的圖像恰有一個(gè)公共點(diǎn),求實(shí)數(shù)a的值;
(3)若函數(shù)有兩個(gè)不同的極值點(diǎn),且,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)在處取得極值,對(duì),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)直線為曲線的切線,且經(jīng)過(guò)原點(diǎn),求直線的方程及切點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)為實(shí)數(shù),函數(shù)。
①求的單調(diào)區(qū)間與極值;
②求證:當(dāng)且時(shí),。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(a>0,b,cÎR),曲線在點(diǎn)P(0,f (0))處的切線方程為.
(Ⅰ)試確定b、c的值;
(Ⅱ)是否存在實(shí)數(shù)a使得過(guò)點(diǎn)(0,2)可作曲線的三條不同切線,若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com