【題目】某商場(chǎng)有獎(jiǎng)銷售中,購(gòu)滿100元商品得1張獎(jiǎng)券,多購(gòu)多得.1 000張獎(jiǎng)券為一個(gè)開獎(jiǎng)單位,設(shè)特等獎(jiǎng)1個(gè),一等獎(jiǎng)10個(gè),二等獎(jiǎng)50個(gè).設(shè)1張獎(jiǎng)券中特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng)的事件分別為A,B,C,求:

(1)P(A),P(B),P(C).

(2)1張獎(jiǎng)券的中獎(jiǎng)概率.

(3)1張獎(jiǎng)券不中特等獎(jiǎng),且不中一等獎(jiǎng)的概率.

【答案】(1);(2);(3).

【解析】試題分析:(1)直接代入等可能事件的概率公式可求;(21張獎(jiǎng)券的中獎(jiǎng)包括三種情況中特等獎(jiǎng)、即事件A發(fā)生中一等獎(jiǎng)、即事件B發(fā)生中二等獎(jiǎng)、即事件C發(fā)生,且ABC互斥,由互斥事件的概率加法公式可求(31張獎(jiǎng)券不中特等獎(jiǎng)且不中一等獎(jiǎng)即為事件,其對(duì)立事件為A+B,利用P)=1PA+B),結(jié)合互斥事件的概率公式可求

試題解析:(1)事件AB,C的概率分別為,,.

21張獎(jiǎng)券中獎(jiǎng)包含中特等獎(jiǎng)、一等獎(jiǎng)、二等獎(jiǎng).設(shè)“1張獎(jiǎng)券中獎(jiǎng)這個(gè)事件為M,則MABC. ∵A、B、C兩兩互斥,

∴PM)=PABC)=PA)+PB)+PC)=

1張獎(jiǎng)券的中獎(jiǎng)概率為.

3)設(shè)“1張獎(jiǎng)券不中特等獎(jiǎng)且不中一等獎(jiǎng)為事件N,則事件N“1張獎(jiǎng)券中特等獎(jiǎng)或中一等獎(jiǎng)為對(duì)立事件,

∴PN)=1PAB)=1-()=.

1張獎(jiǎng)券不中特等獎(jiǎng)且不中一等獎(jiǎng)的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),方程在區(qū)間內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線焦點(diǎn)為,點(diǎn)為該拋物線上不同的三點(diǎn),且滿足.

(1) 求;

(2)若直線軸于點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是定義在R上的二次函數(shù)f(x)的部分圖像,圖2是函數(shù)的部分圖像。

(Ⅰ) 分別求出函數(shù)的解析式;

(Ⅱ)如果函數(shù)在區(qū)間上是單調(diào)遞減函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, .

1)求函數(shù)的極值;

2)若函數(shù)在區(qū)間內(nèi)有兩個(gè)零點(diǎn),求的取值范圍;

3)求證:當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形, , , 是等邊三角形,且側(cè)面底面 分別是 的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求平面與平面所成的二面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某汽車站每天均有3輛開往省城的分為上、中、下等級(jí)的客車,某天袁先生準(zhǔn)備在該汽車站乘車前往省城辦事,但他不知道客車的車況,也不知道發(fā)車順序.為了盡可能乘上上等車,他采取如下策略:先放過一輛,如果第二輛比第一輛好則上第二輛,否則上第三輛.則他乘上上等車的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高三數(shù)學(xué)競(jìng)賽初賽考試后,對(duì)部分考生的成績(jī)進(jìn)行統(tǒng)計(jì)(考生成績(jī)均不低于90分,滿分150分),將成績(jī)按如下方式分成六組,若第四、五、六組的人數(shù)依次成等差數(shù)列,且第六組有4人.

(1)請(qǐng)補(bǔ)充完整頻率分布直方圖,并估計(jì)這組數(shù)據(jù)的平均數(shù)M;

(2)現(xiàn)根據(jù)初賽成績(jī)從第四組和第六組中任意選2人,記他們的成績(jī)分別為.若,則稱此二人為“黃金幫扶組”.試求選出的二人為“黃金幫扶組”的概率;

(3)以此樣本的頻率當(dāng)做概率,現(xiàn)隨機(jī)在這所有考生中選出3名學(xué)生,求成績(jī)不低于120分的人數(shù)的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問卷調(diào)查得到了如下列表:


喜愛打籃球

不喜愛打籃球

合計(jì)

男生


5


女生

10



合計(jì)



50

已知在全班50人中隨機(jī)抽取1人,抽到喜愛打籃球的學(xué)生的概率為

1)請(qǐng)將上表補(bǔ)充完整(不用寫計(jì)算過程);

2)能否有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說(shuō)明你的理由.

下面的臨界值表供參考:


0.15

0.10

0.05

0.025

0.010

0.005

0.001


2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式: ,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案