已知橢圓C:+=1(a>b>0),左、右兩個(gè)焦點(diǎn)分別為F1,F2,上頂點(diǎn)A(0,b),△AF1F2為正三角形且周長(zhǎng)為6.
(1)求橢圓C的標(biāo)準(zhǔn)方程及離心率;
(2)O為坐標(biāo)原點(diǎn),P是直線F1A上的一個(gè)動(dòng)點(diǎn),求|PF2|+|PO|的最小值,并求出此時(shí)點(diǎn)P的坐標(biāo).

(1) +=1   e=   (2)     (,)

解析解:(1)由題設(shè)得
解得a=2,b=,c=1.
故C的方程為+=1,離心率e=.
(2)直線F1A的方程為y=(x+1),
設(shè)點(diǎn)O關(guān)于直線F1A對(duì)稱的點(diǎn)為M(x0,y0),

所以點(diǎn)M的坐標(biāo)為(-,).
∵|PO|=|PM|,|PF2|+|PO|=|PF2|+|PM|≥|MF2|,
|PF2|+|PO|的最小值為
|MF2|==.
直線MF2的方程為y=(x-1),
即y=-(x-1).

所以此時(shí)點(diǎn)P的坐標(biāo)為(,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線的焦點(diǎn)在x軸上,兩個(gè)頂點(diǎn)間的距離為2,焦點(diǎn)到漸近線的距離為.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)寫(xiě)出雙曲線的實(shí)軸長(zhǎng)、虛軸長(zhǎng)、焦點(diǎn)坐標(biāo)、離心率、漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,斜率為1的直線過(guò)拋物線y2=2px(p>0)的焦點(diǎn),與拋物線交于兩點(diǎn)A,B,M為拋物線弧AB上的動(dòng)點(diǎn).

(1)若|AB|=8,求拋物線的方程;
(2)求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知圓P在x軸上截得線段長(zhǎng)為2,在y軸上截得線段長(zhǎng)為2.
(1)求圓心P的軌跡方程;
(2)若P點(diǎn)到直線y=x的距離為,求圓P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知?jiǎng)狱c(diǎn)M(x,y)到直線l:x=4的距離是它到點(diǎn)N(1,0)的距離的2倍.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)過(guò)點(diǎn)P(0,3)的直線m與軌跡C交于A,B兩點(diǎn),若A是PB的中點(diǎn),求直線m的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)拋物線的焦點(diǎn)為,點(diǎn),線段的中點(diǎn)在拋物線上. 設(shè)動(dòng)直線與拋物線相切于點(diǎn),且與拋物線的準(zhǔn)線相交于點(diǎn),以為直徑的圓記為圓
(1)求的值;
(2)證明:圓軸必有公共點(diǎn);
(3)在坐標(biāo)平面上是否存在定點(diǎn),使得圓恒過(guò)點(diǎn)?若存在,求出的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓+=1(a>b>0),點(diǎn)P(a,a)在橢圓上.
(1)求橢圓的離心率;
(2)設(shè)A為橢圓的左頂點(diǎn),O為坐標(biāo)原點(diǎn),若點(diǎn)Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,橢圓過(guò)點(diǎn)P(1, ),其左、右焦點(diǎn)分別為F1,F2,離心率e=, M, N是直線x=4上的兩個(gè)動(dòng)點(diǎn),且·=0.

(1)求橢圓的方程;
(2)求MN的最小值;
(3)以MN為直徑的圓C是否過(guò)定點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,右焦點(diǎn)到直線的距離為
(1)求橢圓的方程;
(2)過(guò)橢圓右焦點(diǎn)F2斜率為)的直線與橢圓相交于兩點(diǎn),為橢圓的右頂點(diǎn),直線分別交直線于點(diǎn),線段的中點(diǎn)為,記直線的斜率為,求證:為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案