設函數(shù)g(x)=4x2-lnx+2,則曲線y=g(x)在點(1,g(1))處的切線方程
 
分析:欲求在點(1,g(1))處的切線方程,只須求出其斜率的值即可,故先利用導數(shù)求出在x=1處的導函數(shù)值,再結合導數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
解答:解:由題意可知,g(x)=4x2-lnx+2
g′(x)=8x-
1
x
(2分)
曲線y=g(x)在點(1,g(1))處的切線斜率k=g′(1)=7,又g(1)=6(3分)
曲線在點(1,g(1))處的切線的方程為y-6=7(x-1)
即y=7x-1(15分)
故答案為:y=7x-1.
點評:本小題主要考查直線的斜率、導數(shù)的幾何意義、利用導數(shù)研究曲線上某點切線方程等基礎知識,考查運算求解能力.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)(x∈D),方程f(x)=x的根x0稱為函數(shù)f(x)的不動點;若a1∈D,an+1=f(an)(n∈N*),則稱{an} 為由函數(shù)f(x)導出的數(shù)列.
設函數(shù)g(x)=
4x+2
x+3
,h(x)=
ax+b
cx+d
(c≠0,ad-bc≠0,(d-a)2+4bc>0)

(1)求函數(shù)g(x)的不動點x1,x2
(2)設a1=3,{an} 是由函數(shù)g(x)導出的數(shù)列,對(1)中的兩個不動點x1,x2(不妨設x1<x2),數(shù)列求證{
an-x1
an-x2
}
是等比數(shù)列,并求
lim
n→∞
an

(3)試探究由函數(shù)h(x)導出的數(shù)列{bn},(其中b1=p)為周期數(shù)列的充要條件.
注:已知數(shù)列{bn},若存在正整數(shù)T,對一切n∈N*都有bn+T=bn,則稱數(shù)列{bn} 為周期數(shù)列,T是它的一個周期.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)g(x)=10x的反函數(shù)是y=f(x),則函數(shù)y=f(4x-3)的定義域是( 。
A、(-∞,+∞)
B、(-∞,
3
4
)
C、[
3
4
,+∞)
D、(
3
4
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•武漢模擬)設函數(shù)f(x)=
4x-4,x≤1
x2-4x+3,x>1
則函數(shù)g(x)=f(x)-log4x的零點個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)m(x)=log2(4x+1),n(x)=kx(k∈R).
(1)當x>0時,F(xiàn)(x)=m(x).若F(x)為R上的奇函數(shù),求x<0時F(x)的表達式;
(2)若f(x)=m(x)+n(x)是偶函數(shù),求k的值;
(3)對(2)中的函數(shù)f(x),設函數(shù)g(x)=log2(a?2x-
43
a),其中a>0.若函數(shù)f(x)與g(x)的圖象有且只有一個公共點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)y=f(x)(x∈D),方程f(x)=x的根x0稱為函數(shù)f(x)的不動點;若a1∈D,an+1=f(an)(n∈N*),則稱{an} 為由函數(shù)f(x)導出的數(shù)列.
設函數(shù)g(x)=
4x+2
x+3
,h(x)=
ax+b
cx+d
(c≠0,ad-bc≠0,(d-a)2+4bc>0)

(1)求函數(shù)g(x)的不動點x1,x2;
(2)設a1=3,{an} 是由函數(shù)g(x)導出的數(shù)列,對(1)中的兩個不動點x1,x2(不妨設x1<x2),數(shù)列求證{
an-x1
an-x2
}
是等比數(shù)列,并求
lim
n→∞
an

(3)試探究由函數(shù)h(x)導出的數(shù)列{bn},(其中b1=p)為周期數(shù)列的充要條件.
注:已知數(shù)列{bn},若存在正整數(shù)T,對一切n∈N*都有bn+T=bn,則稱數(shù)列{bn} 為周期數(shù)列,T是它的一個周期.

查看答案和解析>>

同步練習冊答案