函數(shù)y=
sinθ-13+cosθ
的值域?yàn)?
 
分析:把函數(shù)y 看成P(cosθ,sinθ)與A(-3,1) 兩點(diǎn)連線的斜率,P點(diǎn)的軌跡是圓心為原點(diǎn)的單位圓,故求出
直線PA與圓相切時(shí)的斜率,結(jié)合圖形可得 函數(shù)的值域.
解答:精英家教網(wǎng)解析:記P(cosθ,sinθ),A(-3,1)則y=kPA,
P點(diǎn)的軌跡是圓心為原點(diǎn)的單位圓,
如右圖:當(dāng)直線PA與圓相切時(shí),設(shè)切線方程為y-1=k(x+3),
即 kx-y+3k+1=0,由
|3k+1|
k2+1
=1,解得 k=0,或 k=-
3
4
,
∴y=kPA∈[-
3
4
,0],
故答案為:[-
3
4
,0].
點(diǎn)評(píng):本題考查直線的斜率公式,點(diǎn)到直線的距離公式的應(yīng)用,體現(xiàn)了數(shù)形結(jié)合和轉(zhuǎn)化的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列四種說法:
(1)命題“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”.
(2)若a,b∈R,則“l(fā)og3a>log3b”是“(
1
3
)a<(
1
3
)b
”的必要不充分條件
(3)把函數(shù)y=sin(-2x)(x∈R)的圖象上所有的點(diǎn)向右平移
π
8
個(gè)單位即可得到函數(shù)y=sin(-2x+
π
4
)(x∈R)
的圖象.
(4)若四邊形ABCD是平行四邊形,則
AB
=
DC
BC
=
DA

(5)兩個(gè)非零向量
a
,
b
互相垂直,則|
a
| 2+|
b
|2=(
a
+
b
)2

其中正確說法個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A(cosθ,sinθ)(0<θ<
π2
)
,B(1,0),C(0,1),
(1)用θ表示△ABC的面積S(θ);
(2)求△ABC面積的最大值;
(3)函數(shù)y=S(θ)的圖象可由函數(shù)y=sinθ的圖象經(jīng)過怎樣變換得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下面的3個(gè)命題:
(1)函數(shù)y=|sin(2x+
π
3
)|
的最小正周期是
π
2

(2)函數(shù)y=sin(x-
2
)
在區(qū)間[π,
2
)
上單調(diào)遞增;
(3)x=
4
是函數(shù)y=sin(2x+
2
)
的圖象的一條對(duì)稱軸.
其中正確命題的序號(hào)是
(1)(2)
(1)(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義雙曲正弦函數(shù)y=sin hx=
1
2
(ex-e-x),雙曲余弦函數(shù)y=cos hx=
1
2
(ex+e-x).
(1)各寫出四條雙曲正弦函數(shù)和雙曲余弦函數(shù)的性質(zhì).(定義域除外)
(2)給出雙曲正切函數(shù)、雙曲余切函數(shù)、雙曲正割函數(shù)和雙曲余割函數(shù)的定義式,探究并證明六者間的平方關(guān)系.
(3)模仿三角函數(shù)中兩角的和與差關(guān)系,探究并證明雙曲正弦函數(shù)、雙曲余弦函數(shù)和雙曲正切函數(shù)的“兩角”和與差關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(+)

(1)指出函數(shù)的振幅、周期、初相、頻率和單調(diào)區(qū)間;

(2)利用五點(diǎn)法作出它的簡圖;

(3)說明y=sin(+)的圖象可由y=sinx的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

同步練習(xí)冊(cè)答案