(2009•盧灣區(qū)二模)若z1=1+i,z2=a-i,其中i為虛數(shù)單位,且z1
.
z2
∈R
,則實(shí)數(shù)a=
-1
-1
分析:計(jì)算 z1
.
z2
=a-1+(a+1)i,根據(jù)它為實(shí)數(shù)可得a+1=0,從而得到實(shí)數(shù)a的值.
解答:解:∵z1
.
z2
=(1+i)(a+i)=a-1+(a+1)i 為實(shí)數(shù),
∴a+1=0,∴a=-1.
故答案為-1.
點(diǎn)評(píng):本題主要考查復(fù)數(shù)的基本概念,兩個(gè)復(fù)數(shù)代數(shù)形式的乘法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•盧灣區(qū)二模)設(shè)數(shù)列{an}的前n項(xiàng)之和為Sn,若Sn=
1
12
(an+3)2
(n∈N*),則{an}(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•盧灣區(qū)二模)在平面直角坐標(biāo)系中,若O為坐標(biāo)原點(diǎn),則A、B、C三點(diǎn)在同一直線上的充要條件為存在惟一的實(shí)數(shù)λ,使得
OC
=λ•
OA
+(1-λ)•
OB
成立,此時(shí)稱實(shí)數(shù)λ為“向量
OC
關(guān)于
OA
OB
的終點(diǎn)共線分解系數(shù)”.若已知P1(3,1)、P2(-1,3),且向量
OP3
是直線l:x-y+10=0的法向量,則“向量
OP3
關(guān)于
OP1
OP2
的終點(diǎn)共線分解系數(shù)”為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•盧灣區(qū)二模)在△ABC中,設(shè)角A、B、C所對(duì)的邊分別是a、b、c,若b2+c2=a2+
2
bc
,且a=
2
b
,則∠C=
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•盧灣區(qū)二模)二項(xiàng)式(x+
1
x
)6
的展開(kāi)式中的常數(shù)項(xiàng)為
15
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•盧灣區(qū)二模)若函數(shù)f(x)=2sin2x-2
3
sinxsin(x-
π
2
)
能使得不等式|f(x)-m|<2在區(qū)間(0, 
3
)
上恒成立,則實(shí)數(shù)m的取值范圍是
(1,2]
(1,2]

查看答案和解析>>

同步練習(xí)冊(cè)答案