給定下列四個(gè)命題:
①a,b是兩異面直線,那么經(jīng)過(guò)直線a可以作無(wú)數(shù)個(gè)與直線b平行的平面.
②α,β是任意兩個(gè)平面,那么一定存在平面滿足α⊥γ且β⊥γ.
③a,b是長(zhǎng)方體互相平行的兩條棱,將長(zhǎng)方體展開(kāi),那么在展開(kāi)圖中,a、6對(duì)應(yīng)的線段所在直線互相平行.
④已知任意直線a和平面a,那么一定荏在平面γ,滿足α?γ且α⊥γ.
其中,為真命題的是( )
A.①和②
B.②和③
C.③和④
D.②和④
【答案】分析:①a,b是兩異面直線,把直線b平移與直線a相交,確定一個(gè)平面,因此經(jīng)過(guò)直線a只能作出1個(gè)平面平行于b;②以三棱柱為例即可說(shuō)明結(jié)論正確;③在長(zhǎng)方體中找一組對(duì)棱即可說(shuō)明結(jié)論不正確;④在空間中,垂直于一個(gè)平面的平面有無(wú)數(shù),在平面中任取一條直線a,使命題成立.
解答:解:①∵a,b是兩異面直線,經(jīng)過(guò)直線a只能作出1個(gè)平面平行于b,故①不正確;
②如直三棱柱的任意兩個(gè)側(cè)面都與底面垂直,故②正確;
③如圖所示:a、b對(duì)應(yīng)的線段所在直線不一定互相平行,故③不正確;
④①a在平面α內(nèi),則存在平面γ,滿足a?γ且α⊥γ;
②a不在平面α內(nèi),且a⊥α,則則存在平面γ,滿足a?γ且α⊥γ;
 若a于α不垂直,則它的射影在平面α內(nèi)為一條直線,則直線a與它的射影確定的平面γ與α垂直,
綜上④正確.
故選D.
點(diǎn)評(píng):此題是個(gè)基礎(chǔ)題.考查空間中直線與直線之間的位置關(guān)系,平面與平面之間的位置關(guān)系,以及靈活應(yīng)用知識(shí)分析、解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不重合的平面,給定下列四個(gè)命題,其中為真命題的是( 。

m⊥n
n?α
?m⊥α
;②
a⊥α
a?β
?α⊥β
;
m⊥α
n⊥α
?m∥n
;④
m?α
n?β
α∥β
?m∥n
A、①和②B、②和③
C、③和④D、①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定下列四個(gè)命題:
①若
1
a
1
b
<0
,則b2>a2
②已知直線l,平面α,β為不重合的兩個(gè)平面.若l⊥α,且α⊥β,則l∥β;
③若-1,a,b,c,-16成等比數(shù)列,則b=-4;
④若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,則a1+a2+a3+a4+a5=-1.
其中為真命題的是
 
.(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、給定下列四個(gè)命題:
①若兩個(gè)平面互相垂直,那么分別在這兩個(gè)平面內(nèi)的任意兩條直線也互相垂直;
②若一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線,那么這兩個(gè)平面相互垂直;
③若兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面.
④若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;
其中,為真命題的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定下列四個(gè)命題:
①a,b是兩異面直線,那么經(jīng)過(guò)直線a可以作無(wú)數(shù)個(gè)與直線b平行的平面.
②α,β是任意兩個(gè)平面,那么一定存在平面滿足α⊥γ且β⊥γ.
③a,b是長(zhǎng)方體互相平行的兩條棱,將長(zhǎng)方體展開(kāi),那么在展開(kāi)圖中,a、6對(duì)應(yīng)的線段所在直線互相平行.
④已知任意直線a和平面a,那么一定荏在平面γ,滿足α?γ且α⊥γ.
其中,為真命題的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定下列四個(gè)命題:①若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;②若一個(gè)平面經(jīng)過(guò)另一個(gè)平面的垂線,那么這兩個(gè)平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直.其中正確的個(gè)數(shù)有
2
2
個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案