已知數(shù)列{an}滿足a1=1,an=a1+2a2+3a3+…+(n-1)an-1,則n≥2時(shí),數(shù)列{an}的通項(xiàng)an=( 。
分析:由an=a1+2a2+3a3+…+(n-1)an-1(n≥2),得nan+an=a1+2a2+3a3+…+(n-1)an-1+nan(n≥2),整理可得
an+1
an
=n+1
(n≥2),累乘即可得到答案,注意n的范圍.
解答:解:由an=a1+2a2+3a3+…+(n-1)an-1(n≥2),得
nan+an=a1+2a2+3a3+…+(n-1)an-1+nan(n≥2),
∴(n+1)•an=an+1(n≥2),則
an+1
an
=n+1
(n≥2),
又a1=1,∴a2=1,
a3
a2
=3,
a4
a3
=4,…,
an
an-1
=n.
累積得an=
n!
2
(n≥2),
故選A.
點(diǎn)評(píng):本題考查由數(shù)列遞推式求數(shù)列的通項(xiàng),累乘法是求數(shù)列通項(xiàng)公式的常用方法,要準(zhǔn)確把握其解決方法及使用條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊答案