(本小題滿分12分)如圖,已知在四棱錐中,底面是矩形,平面,,,是的中點, 是線段上的點.
(I)當是的中點時,求證:平面;
(II)要使二面角的大小為,試確定點的位置.
(I)只需證;(II)。
【解析】
試題分析:【法一】(I)證明:如圖,取的中點,連接.
由已知得且,
又是的中點,則且,
是平行四邊形, ………………
∴
又平面,平面
平面………………………
(II)如圖,作交的延長線于.
連接,由三垂線定理得,
是二面角的平面角.即…………………
,設,
由可得
故,要使要使二面角的大小為,只需………………
【法二】(I)由已知,兩兩垂直,分別以它們所在直線為軸建立空間直角坐標系.
則,,則………………
,,,
設平面的法向量為
則,
令得………………………………………
由,得
又平面,故平面…………………
(II)由已知可得平面的一個法向量為,
設,設平面的法向量為
則,令得……………
由,
故,要使要使二面角的大小為,只需……………
考點:線面垂直項性質定理;線面平行的判定定理;二面角。
點評:綜合法求二面角,往往需要作出平面角,這是幾何中一大難點,而用向量法求解二面角無需作出二面角的平面角,只需求出平面的法向量,經過簡單運算即可,從而體現了空間向量的巨大作用.二面角的向量求法: ①若AB、CD分別是二面的兩個半平面內與棱垂直的異面直線,則二面角的大小就是向量與的夾角或補角; ②設分別是二面角的兩個面α,β的法向量,則向量的夾角(或其補角)的大小就是二面角的平面角的大小。
科目:高中數學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數分別占總數的、、.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com