18.求實數(shù)m的值,使復數(shù)z=(m2-5m+6)+(m2-3m)i分別是
(1)實數(shù); 
(2)純虛數(shù); 
(3)零.

分析 根據(jù)復數(shù)的有關概念,建立方程組或不等式組進行求解即可.

解答 解:(1)當m2-3m=0,即m1=0或m2=3時,z是實數(shù);
(2)當$\left\{\begin{array}{l}{{m}^{2}-5m+6=0}\\{{m}^{2}-3m≠0}\end{array}\right.$,得$\left\{\begin{array}{l}{m=2或m=3}\\{m≠0且m≠3}\end{array}\right.$,即m=2時,z是純虛數(shù);
(3)當$\left\{\begin{array}{l}{{m}^{2}-5m+6=0}\\{{m}^{2}-3m=0}\end{array}\right.$,即$\left\{\begin{array}{l}{m=2或m=3}\\{m=0或m=3}\end{array}\right.$,即m=3時,z是零.

點評 本題主要考查復數(shù)的有關概念,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.設${({2x+\frac{1}{2}})^{10}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{10}}{x^{10}}$.
(1)求a0+a1+a2+…+an
(2)記an(0≤n≤10)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知點P(sinα,cosα)在第三象限,則角α的終邊在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知拋物線C:y2=2px(p>0)的焦點為F,A為C上異于原點的任意一點,過點A的直線l交C于另一點B,交x軸的正半軸于點D,且有|FA|=|FD|,當點A的橫坐標為3時,△ADF為正三角形.
(Ⅰ)求C的方程;
(Ⅱ)若直線l1∥l,且l1和C有且只有一個公共點E,試問直線AE是否過定點,若過定點,求出定點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.中心在原點,焦點在x軸上的雙曲線C的離心率為2,直線l與雙曲線C交于A,B兩點,線段AB中點M在第一象限,并且在拋物線y2=2px(p>0)上,若點M到拋物線焦點的距離為p,則直線l的斜率為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)y=x2cosx,則y′=( 。
A.2xcosx-x2sinxB.2xcosx+x2sinxC.2xsinxD.-2xsinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.為了了解學生的視力情況,隨機抽查了一批學生的視力,將抽查結(jié)果繪制成頻率分布直方圖(如圖所示),若在[5.0,5.4]內(nèi)的學生人數(shù)是10,則根據(jù)圖中數(shù)據(jù)可得被樣本數(shù)據(jù)的中位數(shù)是4.456;視力在[3.8,4.2]人數(shù)為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.不等式$\frac{1}{x-1}$≤1的解集為(  )
A.(-∞,1)∪[2,+∞)B.(-∞,0]∪(1,+∞)C.(1,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某醫(yī)學院讀書協(xié)會欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如圖頻數(shù)分布直方圖:
該協(xié)會確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

(1)記選取的2組數(shù)據(jù)相隔的月份數(shù)為X,若是相鄰2組的數(shù)據(jù),則X=0,求X的分布列及數(shù)學期望;
(2)已知選取的是1月與6月的兩組數(shù)據(jù).
(i)請根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)y關于晝夜溫差x的線性回歸方程;
(ii)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該協(xié)會所得線性回歸方程是否理想?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$),$\widehat{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

同步練習冊答案