(12分)如圖,四邊形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,
若在線段PD上存在點E使得BE⊥CE,求線段AD的取值范圍,并求當(dāng)線段PD上有且只
有一個點E使得BE⊥CE時,二面角E—BC—A正切值的大小。
若以BC為直徑的球面與線段PD有交點E,由于點E與BC確定的平面與球的截
面是一個大圓,則必有BE⊥CE,因此問題轉(zhuǎn)化為以BC為直徑的球與線段PD有交點。
設(shè)BC的中點為O(即球心),再取AD的中點M,易知OM⊥平面PAD,作ME⊥PD交PD于點E,連結(jié)OE,則OE⊥PD,所以O(shè)E即為點O到直線PD的距離,又因為OD>OC,OP>OA>OB,點P,D在球O外,所以要使以BC為直徑的球與線段PD有交點,只要使OE≤OC(設(shè)OC=OB=R)即可。
由于△DEM∽△DAP,可求得ME= ,
所以O(shè)E2=9+ 令OE2≤R2,即9+ ≤R2 ,解之得R≥2;
所以AD=2R≥4,所以AD的取值范圍[ 4,+∞,
當(dāng)且僅當(dāng)AD= 4時,點E在線段PD上惟一存在,此時易求得二面角E—BC—A的平面角正切值為。
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com