【題目】設(shè)橢圓E的方程為+=1(ab0),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)M在線段AB上,滿足=2,直線OM的斜率為。
(1)求E的離心率e。
(2)設(shè)點(diǎn)C的坐標(biāo)為(0,-b),N為線段AC的中點(diǎn),點(diǎn)N關(guān)于直線AB的對(duì)稱點(diǎn)的縱坐標(biāo)為,求E的方程

【答案】
(1)

e=


(2)

E的方程為.


【解析】1、由題設(shè)條件知,點(diǎn)M的坐標(biāo)為(,),又Kom=,從而=,進(jìn)而得a=,c==2b,故e==.
2、由題設(shè)條件和(1)的計(jì)算結(jié)果可得,直線AB的方程為+=1,點(diǎn)N的坐標(biāo)為(,-),設(shè)點(diǎn)N關(guān)于直線AB的對(duì)稱點(diǎn)S的坐標(biāo)為(x1 , ),則線段NS的中點(diǎn)T的坐標(biāo)為(,)又點(diǎn)T在直線AB上,且KNSKAB=-1從而可解得b=3,所以a=故圓E的方程為.
【考點(diǎn)精析】利用橢圓的概念對(duì)題目進(jìn)行判斷即可得到答案,需要熟知平面內(nèi)與兩個(gè)定點(diǎn),的距離之和等于常數(shù)(大于)的點(diǎn)的軌跡稱為橢圓,這兩個(gè)定點(diǎn)稱為橢圓的焦點(diǎn),兩焦點(diǎn)的距離稱為橢圓的焦距.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的函數(shù) 滿足 ,其導(dǎo)函數(shù) 滿足 ,則下列結(jié)論中一定錯(cuò)誤的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(I)求f(x)的最小正周期;
(II)求f(x)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·湖北)一種畫橢圓的工具如圖1所示.是滑槽的中點(diǎn),短桿ON可繞O轉(zhuǎn)動(dòng),長(zhǎng)桿MN通過N處鉸鏈
與ON連接,MN上的栓子D可沿滑槽AB滑動(dòng),且.當(dāng)栓子D在滑槽AB內(nèi)作往復(fù)運(yùn)動(dòng)時(shí),帶動(dòng)N繞轉(zhuǎn)動(dòng),M處的筆尖畫出的橢圓記為C.以O(shè)為原點(diǎn),AB所在的直線為軸建立如圖2所示的平面直角坐標(biāo)系.
(1)(Ⅰ)求橢圓C的方程;
(2)(Ⅱ)設(shè)動(dòng)直線與兩定直線分別交于兩點(diǎn).若直線總與橢圓有且只有一個(gè)公共點(diǎn),試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是遞增的等比數(shù)列,a1+a4=9,a2a3=8,則數(shù)列的前n項(xiàng)和等于,解得a1=1,a4=8,或者a1=8,a4=1,但由于是遞增數(shù)列,即a1=1,a4=8,即q3==8,所以q=2.因而數(shù)列的前n項(xiàng)和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·陜西)如圖,一橫截面為等腰梯形的水渠,因泥沙沉積,導(dǎo)致水渠截面邊界呈拋物線型(圖中虛線表示),則原始的最大流量與當(dāng)前最大流量的比值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求的解析式;

2)求的值域,設(shè),為實(shí)數(shù)),求時(shí)的最大值

3)對(duì)(2)中,若對(duì)的所有實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·湖南)某工作的三視圖如圖3所示,現(xiàn)將該工作通過切削,加工成一個(gè)體積盡可能大的正方體新工件,并使新工件的一個(gè)面落在原工作的一個(gè)面內(nèi),則原工件材料的利用率為(材料利用率=新工件的體積/原工件的體積)

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=是定義在R上的奇函數(shù),且f(1)=1.

(1)求a,b的值;

(2)判斷并用定義證明f(x)在(+∞)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案