精英家教網 > 高中數學 > 題目詳情

已知是定義在R上的函數,,。

(1)函數是不是周期函數,若是,求出周期。

(2)判斷的奇偶性

 

【答案】

(1)4;(2)奇函數.

【解析】本試題主要考查了函數的周期性以及函數的奇偶性的運用。

解:因為函數函數滿足所以周期為4,

(2),令u=2-x,則x=2-u故f(u)=-f(4-u),即

以-x代x,得到f(-x)=-f(x+4)

結合(1)知,

所以函數f(x)是奇函數

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

12、已知f(x)與g(x)是定義在R上的連續(xù)函數,如果f(x)與g(x)僅當x=0時的函數值為0,且f(x)≥g(x),那么下列情形不可能出現的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函f(x)的圖象關于點(-
3
4
,0
)對稱,且滿足f(x)=-f(x+
3
2
),f(0)=2,f(1)=-1,則f(1)+f(2)+f(3)+…+f(2009)的值是( 。
A、1B、-1C、2D、-2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)是定義在R上的不恒為零的函數,且對于任意實數a,b都有f(a•b)=af(b)+bf(a),則(  )

查看答案和解析>>

科目:高中數學 來源:遼寧 題型:單選題

已知f(x)與g(x)是定義在R上的連續(xù)函數,如果f(x)與g(x)僅當x=0時的函數值為0,且f(x)≥g(x),那么下列情形不可能出現的是( 。
A.0是f(x)的極大值,也是g(x)的極大值
B.0是f(x)的極小值,也是g(x)的極小值
C.0是f(x)的極大值,但不是g(x)的極值
D.0是f(x)的極小值,但不是g(x)的極值

查看答案和解析>>

科目:高中數學 來源:2010-2011學年浙江省高三三月月考數學(理)試卷 題型:選擇題

已知函數是定義在R上的奇函數,且,在[0,2]上是增函

數,則下列結論:

(1)若,則;[來源:Z§xx§k.Com]

(2)若

(3)若方程在[-8,8]內恰有四個不同的根,則;

其中正確的有(     )

A.0個              B.1個             C.2個               D.3個

 

查看答案和解析>>

同步練習冊答案