【題目】已知圓的圓心在射線上,截直線所得的弦長為6,且與直線相切.
(1)求圓的方程;
(2)已知點,在直線上是否存在點(異于點),使得對圓上的任一點,都有為定值?若存在,請求出點的坐標及的值;若不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調性;
(2)當時,函數(shù)在是否存在零點?如果存在,求出零點;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,底面為正方形的四棱錐P-ABCD中,AB=2,PA=4,PB=PD=,AC與BD相交于點O,E為PD中點.
(1)求證:EO//平面PBC;
(2)設線段BC上點F滿足CF=2BF,求銳二面角E-OF-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】蘋果是人們?nèi)粘I钪谐R姷臓I養(yǎng)型水果.某地水果批發(fā)市場銷售來自5個不同產(chǎn)地的富士蘋果,各產(chǎn)地的包裝規(guī)格相同,它們的批發(fā)價格(元/箱)和市場份額如下:
產(chǎn)地 | |||||
批發(fā)價格 | |||||
市場份額 |
市場份額亦稱“市場占有率”.指某一產(chǎn)品的銷售量在市場同類產(chǎn)品中所占比重.
(1)從該地批發(fā)市場銷售的富士蘋果中隨機抽取一箱,求該箱蘋果價格低于元的概率;
(2)按市場份額進行分層抽樣,隨機抽取箱富士蘋果進行檢驗,
①從產(chǎn)地共抽取箱,求的值;
②從這箱蘋果中隨機抽取兩箱進行等級檢驗,求兩箱產(chǎn)地不同的概率;
(3)由于受種植規(guī)模和蘋果品質的影響,預計明年產(chǎn)地的市場份額將增加,產(chǎn)地的市場份額將減少,其它產(chǎn)地的市場份額不變,蘋果銷售價格也不變(不考慮其它因素).設今年蘋果的平均批發(fā)價為每箱元,明年蘋果的平均批發(fā)價為每箱元,比較的大小.(只需寫出結論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖已知橢圓,是長軸的一個端點,弦過橢圓的中心,且,.
(Ⅰ)求橢圓的方程:
(Ⅱ)設為橢圓上異于且不重合的兩點,且的平分線總是垂直于軸,是否存在實數(shù),使得,若存在,請求出的最大值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是通過某城市開發(fā)區(qū)中心O的兩條南北和東西走向的街道,連結M,N兩地之間的鐵路線是圓心在上的一段圓弧,若點M在點O正北方向3公里;點N到的距離分別為4公里和5公里.
(1)建立適當?shù)淖鴺讼,求鐵路線所在圓弧的方程;
(2)若該城市的某中學擬在點O的正東方向選址建分校,考慮環(huán)境問題,要求校址到點O的距離大于4公里,并且鐵路上任意一點到校址的距離不能小于公里,求該校址距點O的最短距離(注:校址視為一個點)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2x3+ax2+bx+1的極值點為﹣1和1.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)的單調區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)。
(1)若曲線在點處的切線與直線垂直,求的單調遞減區(qū)間和極小值(其中為自然對數(shù)的底數(shù));
(2)若對任意恒成立,求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com