如圖,在矩形ABCD中,AB>·AD,E為AD的中點,連結EC,作EF⊥EC,且EF交AB于F,連結FC.設=k,是否存在實數(shù)k,使△AEF、△ECF、△DCE與△BCF都相似?若存在,給出證明;若不存在,請說明理由.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,,分別為的邊上的點,且不與的頂點重合。已知的長為,AC的長為n,,的長是關于的方程的兩個根。

(1)證明:,四點共圓;
(2)若,且,求,,所在圓的半徑。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,為圓的直徑,為垂直的一條弦,垂足為,弦.
(1)求證:、、、四點共圓;
(2)若,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,圓O的兩弦AB和CD交于點E,EF∥CB,EF交AD的延長線于點F,F(xiàn)G切圓O于點G.

(1)求證:△DEF∽△EFA;
(2)如果FG=1,求EF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,圓O與圓O′內(nèi)切于點T,點P為外圓O上任意一點,PM與內(nèi)圓O′切于點M.求證:PM∶PT為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,PA為⊙O的切線,A為切點,PBC是過點O的割線,PA=10,PB=5。

求:(1)⊙O的半徑;(2)s1n∠BAP的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知C點在圓O直徑BE的延長線上,CA切圓O于A點,DC是∠ACB的平分線交AE于點F,交AB于D點.

(1)求∠ADF的度數(shù);
(2)AB=AC,求AC∶BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖,在中,//,//,若

,則BD的長為        、AB的長為___________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形ABCD中,DF⊥AB,垂足為F,DF=3,AF=2FB=2,延長FB到E,使BE=FB.連結BD、EC,若BD∥EC,求△BCD和四邊形ABCD的面積.

查看答案和解析>>

同步練習冊答案