【題目】某校高二年級某班的數學課外活動小組有6名男生,4名女生,從中選出4人參加數學競賽考試,用X表示其中男生的人數.
(1)請列出X的分布列;
(2)根據你所列的分布列求選出的4人中至少有3名男生的概率.
科目:高中數學 來源: 題型:
【題目】某校高一年級開設了豐富多彩的校本課程,現(xiàn)從甲、乙兩個班隨機抽取了5名學生校本課程的學分,統(tǒng)計如下表.
甲 | 8 | 11 | 14 | 15 | 22 |
乙 | 6 | 7 | 10 | 23 | 24 |
用分別表示甲、乙兩班抽取的5名學生學分的方差,計算兩個班學分的方差.得______,并由此可判斷成績更穩(wěn)定的班級是______班.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設為兩個隨機事件,給出以下命題:(1)若為互斥事件,且,,則;(2)若,,,則為相互獨立事件;(3)若,,,則為相互獨立事件;(4)若,,,則為相互獨立事件;(5)若,,,則為相互獨立事件;其中正確命題的個數為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中盈不足章中有這樣一則故事:“今有良馬與駑馬發(fā)長安,至齊. 齊去長安三千里. 良馬初日行一百九十三里,日增一十二里;駑馬初日行九十七里,日減二里.” 為了計算每天良馬和駑馬所走的路程之和,設計框圖如下圖. 若輸出的 的值為 350,則判斷框中可填( )
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】閱讀:
已知、,,求的最小值.
解法如下:,
當且僅當,即時取到等號,
則的最小值為.
應用上述解法,求解下列問題:
(1)已知,,求的最小值;
(2)已知,求函數的最小值;
(3)已知正數、、,,
求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示, 平面,平面平面,四邊形為正方形,, ,點在棱上.
(1)若為的中點為的中點,證明:平面平面;
(2)設,是否存在,使得平面平面?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某縣畜牧技術員張三和李四9年來一直對該縣山羊養(yǎng)殖業(yè)的規(guī)模進行跟蹤調查,張三提供了該縣某山羊養(yǎng)殖場年養(yǎng)殖數量y(單位:萬只)與相成年份x(序號)的數據表和散點圖(如圖所示),根據散點圖,發(fā)現(xiàn)y與x有較強的線性相關關系,李四提供了該縣山羊養(yǎng)殖場的個數z(單位:個)關于x的回歸方程.
(1)根據表中的數據和所給統(tǒng)計量,求y關于x的線性回歸方程(參考統(tǒng)計量:);
(2)試估計:①該縣第一年養(yǎng)殖山羊多少萬只?
②到第幾年,該縣山羊養(yǎng)殖的數量與第一年相比縮小了?
附:對于一組數據,其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖已知拋物線的焦點坐標為,過的直線交拋物線于兩點,直線分別與直線:相交于兩點.
(1)求拋物線的方程;
(2)證明△ABO與△MNO的面積之比為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】空氣質量指數AQI是一種反映和評價空氣質量的方法,AQI指數與空氣質量對應如表所示:
AQI | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | 300以上 |
空氣質量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴重污染 |
如圖是某城市2018年12月全月的AQI指數變化統(tǒng)計圖:
根據統(tǒng)計圖判斷,下列結論正確的是( 。
A. 整體上看,這個月的空氣質量越來越差
B. 整體上看,前半月的空氣質量好于后半個月的空氣質量
C. 從AQI數據看,前半月的方差大于后半月的方差
D. 從AQI數據看,前半月的平均值小于后半月的平均值
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com