【題目】已知函數(shù)

(I)當時,求的單調(diào)區(qū)間和極值;

(II)若對于任意,都有成立,求k的取值范圍;

(Ⅲ),且,證明:

【答案】(I)極小值為,無極大值;(II);(3)見解析.

【解析】試題分析:(1)由題意x>0,由此根據(jù)k≤0,k>0利用導數(shù)性質分類討論,能求出函數(shù)f(x)的單調(diào)區(qū)間和極值.
(2)問題轉化為,對于x[e,e2]恒成立,令,則,,由此利用導數(shù)性質能求出實數(shù)k的取值范圍.
(3)設,則,要證,只要證,即證,由此利用導數(shù)性質能證明.

試題解析:

(1),

時,因為,所以,

函數(shù)的單調(diào)遞增區(qū)間是,無單調(diào)遞減區(qū)間,無極值;

②當時,令,解得,

時,;當,

所以函數(shù)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,

在區(qū)間上的極小值為,無極大值.

(2)由題意,,

即問題轉化為對于恒成立,

對于恒成立,

,則,

,則

所以在區(qū)間上單調(diào)遞增,故,故,

所以在區(qū)間上單調(diào)遞增,函數(shù)

要使對于恒成立,只要,

所以,即實數(shù)k的取值范圍為

(3)證法1 因為,由(1)知,函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,且

不妨設,則,

要證,只要證,即證

因為在區(qū)間上單調(diào)遞增,所以

,即證

構造函數(shù),

,

因為,所以,即

所以函數(shù)在區(qū)間上單調(diào)遞增,故,

,故,

所以,即,所以成立.

證法2 要證成立,只要證:.

因為,且,所以,

,

,

,同理,

從而

要證,只要證

令不妨設,則,

即證,即證,

即證恒成立,

,,

所以單調(diào)遞增,,得證,所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了增強高考與高中學習的關聯(lián)度,考生總成績由統(tǒng)一高考的語文、數(shù)學、外語3個科目成績和高中學業(yè)水平考試3個科目成績組成.保持統(tǒng)一高考的語文、數(shù)學、外語科目不變,分值不變,不分文理科,外語科目提供兩次考試機會.計入總成績的高中學業(yè)水平考試科目,由考生根據(jù)報考高校要求和自身特長,在思想政治、歷史、地理、物理、化學、生物、信息技術七科目中自主選擇三科.

(1)某高校某專業(yè)要求選考科目物理,考生若要報考該校該專業(yè),則有多少種選考科目的選擇;

(2)甲、乙、丙三名同學都選擇了物理、化學、歷史組合,各學科成績達到二級的概率都是0.8,且三人約定如果達到二級不參加第二次考試,達不到二級參加第二次考試,如果設甲、乙、丙參加第二次考試的總次數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓C: 的左焦點為F,過點F的直線與橢圓C相交于A,B兩點,直線l的傾斜角為60°,

(1)求橢圓C的離心率;
(2)如果|AB|= ,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=n(n+1),
(1)求數(shù)列{an}的通項公式an
(2)數(shù)列{bn}的通項公式bn= ,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足3(n+1)an=nan+1(n∈N*),且a1=3,
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn;
(3)若 = ,求證: + +…+ <1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設{an}為單調(diào)遞增數(shù)列,首項a1=4,且滿足an+12+an2+16=8(an+1+an)+2an+1an , n∈N* , 則a1﹣a2+a3﹣a4+…+a2n1﹣a2n=(
A.﹣2n(2n﹣1)
B.﹣3n(n+3)
C.﹣4n(2n+1)
D.﹣6n(n+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知遞增的等差數(shù)列{an},首項a1=2,Sn為其前n項和,且2S1 , 2S2 , 3S3成等比數(shù)列.
(1)求{an}的通項公式;
(2)設bn= ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知,且.

(1)求的最小值;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在銳角△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面積.

查看答案和解析>>

同步練習冊答案