已知函數(shù)(常數(shù))在處取得極大值M.
(Ⅰ)當(dāng)M=時(shí),求的值;
(Ⅱ)記在上的最小值為N,若,求的取值范圍.
(1)(2)
解析試題分析:解(Ⅰ),由于函數(shù)(常數(shù))在處取得極大值M,故有(時(shí),不合題意,舍去),當(dāng)時(shí),經(jīng)檢驗(yàn),函數(shù)在處取得極大值(在處取得極小值),故所求
(Ⅱ)當(dāng)時(shí),由,即 成立,得(1)
當(dāng)時(shí),不等式(1)成立
當(dāng),不等式(1)可化為(這里),令,則,所以在單調(diào)遞減,故
當(dāng),不等式(1)可化為(這里),設(shè),
由,得到或,討論可知:在單調(diào)遞減,在單調(diào)遞增,故在的最小值是,故
綜合上述(1)(2)(3)可得,又因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/03/a/1s1rf3.png" style="vertical-align:middle;" />,故所求的取值范圍是
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):解決的關(guān)鍵是利用導(dǎo)數(shù)的幾何意義,以及導(dǎo)數(shù)的符號(hào)來判定函數(shù)單調(diào)性,進(jìn)而求解最值,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線 y = x3 + x-2 在點(diǎn) P0 處的切線 與直線4x-y-1=0平行,且點(diǎn) P0 在第三象限,
(1)求P0的坐標(biāo);
(2)若直線 , 且 l 也過切點(diǎn)P0 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),且在和處取得極值.
(1)求函數(shù)的解析式.
(2)設(shè)函數(shù),是否存在實(shí)數(shù),使得曲線與軸有兩個(gè)交點(diǎn),若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的最小值為0,其中。
(1)求a的值
(2)若對(duì)任意的,有成立,求實(shí)數(shù)k的最小值
(3)證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1) 求的單調(diào)區(qū)間與極值;
(2)是否存在實(shí)數(shù),使得對(duì)任意的,當(dāng)時(shí)恒有成立.若存在,求的范圍,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知函數(shù)
(1) 當(dāng)時(shí),求函數(shù)的最值;
(2) 求函數(shù)的單調(diào)區(qū)間;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)()的圖象為曲線.
(Ⅰ)求曲線上任意一點(diǎn)處的切線的斜率的取值范圍;
(Ⅱ)若曲線上存在兩點(diǎn)處的切線互相垂直,求其中一條切線與曲線的切點(diǎn)的橫坐標(biāo)的取值范圍;
(Ⅲ)試問:是否存在一條直線與曲線C同時(shí)切于兩個(gè)不同點(diǎn)?如果存在,求出符合條件的所有直線方程;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com