現(xiàn)有數(shù)列{an}滿足:a1=1,且對(duì)任意的m,n∈N*都有:am+n=am+an+mn,則
1
a1
+
1
a2
+
1
a3
+…
1
a2012
=( 。
分析:由a1=1,且對(duì)任意的m,n∈N*都有:am+n=am+an+mn,令m=1可得:an+1=an+a1+n,即an+1-an=1+n,利用“累加求和”即可得到an,再利用“裂項(xiàng)求和”即可得出.
解答:解:由a1=1,且對(duì)任意的m,n∈N*都有:am+n=am+an+mn,
令m=1可得:an+1=an+a1+n,∴an+1-an=1+n,
∴an=a1+(a2-a1)+…+(an-an-1
=1+2+…+n=
n(n+1)
2
,
an=
n(n+1)
2

1
an
=
2
n(n+1)
=2(
1
n
-
1
n+1
)

1
a1
+
1
a2
+
1
a3
+…
1
a2012
=2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
2012
-
1
2013
)]

=2(1-
1
2013
)
=
4024
2013

故選B.
點(diǎn)評(píng):正確理解題意和“累加求和”、“裂項(xiàng)求和”等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們知道,如果定義在某區(qū)間上的函數(shù)f(x)滿足對(duì)該區(qū)間上的任意兩個(gè)數(shù)x1、x2,總有不等式
f(x1)+f(x2)
2
≤f(
x1+x2
2
)
成立,則稱函數(shù)f(x)為該區(qū)間上的向上凸函數(shù)(簡(jiǎn)稱上凸).類比上述定義,對(duì)于數(shù)列{an},如果對(duì)任意正整數(shù)n,總有不等式:
an+an+2
2
an+1
成立,則稱數(shù)列{an}為向上凸數(shù)列(簡(jiǎn)稱上凸數(shù)列).現(xiàn)有數(shù)列{an}滿足如下兩個(gè)條件:
(1)數(shù)列{an}為上凸數(shù)列,且a1=1,a10=28;
(2)對(duì)正整數(shù)n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
則數(shù)列{an}中的第五項(xiàng)a5的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

我們知道,如果定義在某區(qū)間上的函數(shù)f(x)滿足對(duì)該區(qū)間上的任意兩個(gè)數(shù)x1、x2,總有不等式數(shù)學(xué)公式成立,則稱函數(shù)f(x)為該區(qū)間上的向上凸函數(shù)(簡(jiǎn)稱上凸).類比上述定義,對(duì)于數(shù)列{an},如果對(duì)任意正整數(shù)n,總有不等式:數(shù)學(xué)公式成立,則稱數(shù)列{an}為向上凸數(shù)列(簡(jiǎn)稱上凸數(shù)列).現(xiàn)有數(shù)列{an}滿足如下兩個(gè)條件:
(1)數(shù)列{an}為上凸數(shù)列,且a1=1,a10=28;
(2)對(duì)正整數(shù)n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
則數(shù)列{an}中的第五項(xiàng)a5的取值范圍為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省宿遷中學(xué)高考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

我們知道,如果定義在某區(qū)間上的函數(shù)f(x)滿足對(duì)該區(qū)間上的任意兩個(gè)數(shù)x1、x2,總有不等式成立,則稱函數(shù)f(x)為該區(qū)間上的向上凸函數(shù)(簡(jiǎn)稱上凸).類比上述定義,對(duì)于數(shù)列{an},如果對(duì)任意正整數(shù)n,總有不等式:成立,則稱數(shù)列{an}為向上凸數(shù)列(簡(jiǎn)稱上凸數(shù)列).現(xiàn)有數(shù)列{an}滿足如下兩個(gè)條件:
(1)數(shù)列{an}為上凸數(shù)列,且a1=1,a10=28;
(2)對(duì)正整數(shù)n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
則數(shù)列{an}中的第五項(xiàng)a5的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年上海市浦東新區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

我們知道,如果定義在某區(qū)間上的函數(shù)f(x)滿足對(duì)該區(qū)間上的任意兩個(gè)數(shù)x1、x2,總有不等式成立,則稱函數(shù)f(x)為該區(qū)間上的向上凸函數(shù)(簡(jiǎn)稱上凸).類比上述定義,對(duì)于數(shù)列{an},如果對(duì)任意正整數(shù)n,總有不等式:成立,則稱數(shù)列{an}為向上凸數(shù)列(簡(jiǎn)稱上凸數(shù)列).現(xiàn)有數(shù)列{an}滿足如下兩個(gè)條件:
(1)數(shù)列{an}為上凸數(shù)列,且a1=1,a10=28;
(2)對(duì)正整數(shù)n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
則數(shù)列{an}中的第五項(xiàng)a5的取值范圍為   

查看答案和解析>>

同步練習(xí)冊(cè)答案