求證:-1>.證明:要證-1>,只需證+1,即證7+2+5>11+2+1,,因為35>11,所以原不等式成立.以上證明運用了

[  ]
A.

分析法

B.

綜合法

C.

分析法與綜合法綜合使用

D.

間接證明

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg(
2a1+x
-1)
(其中a>0).求證:
(1)用反證法證明函數(shù)f(x)不能為偶函數(shù);
(2)函數(shù)f(x)為奇函數(shù)的充要條件是a=1.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=lg(
2a
1+x
-1)
(其中a>0).求證:
(1)用反證法證明函數(shù)f(x)不能為偶函數(shù);
(2)函數(shù)f(x)為奇函數(shù)的充要條件是a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x-1)2,g(x)=4(x-1),數(shù)列{an}滿足a1=2,an≠1,(an+1-an)g(an)+f(an)=0.

(Ⅰ)求證:an+1=an+;

(Ⅱ)證明:數(shù)列{an-1}為等比數(shù)列,并求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省鹽城市高二(下)期末數(shù)學試卷(文科)(解析版) 題型:解答題

已知函數(shù)(其中a>0).求證:
(1)用反證法證明函數(shù)f(x)不能為偶函數(shù);
(2)函數(shù)f(x)為奇函數(shù)的充要條件是a=1.

查看答案和解析>>

同步練習冊答案