【題目】已知橢圓:()的離心率,左、右焦點分別為、,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段的垂直平分線交于點.
(1)求點的軌跡的方程;
(2)當直線與橢圓相切,交于點,,當時,求的直線方程.
科目:高中數(shù)學 來源: 題型:
【題目】一個總體容量為60,其中的個體編號為00,01,02,…,59.現(xiàn)需從中抽取一個容量為7的樣本,請從隨機數(shù)表的倒數(shù)第5行(下表為隨機數(shù)表的最后5行)第11~12列的18開始,依次向下,到最后一行后向右,直到取足樣本,則抽取樣本的號碼是_____________.
95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 95
38 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 80
82 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 50
24 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 49
96 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下命題正確的個數(shù)是
①函數(shù)在處導數(shù)存在,若;是的極值點,則是的必要不充分條件
②實數(shù)為實數(shù),的等比中項,則
③兩個非零向量與,若,則與的夾角為鈍角
④平面內到一個定點和一條定直線距離相等的點的軌跡叫拋物線
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設為奇函數(shù),a為常數(shù).
(1)求a的值;
(2)判斷函數(shù)在時單調性并證明;
(3)若對于區(qū)間上的每一個x的值,不等式恒成立,求m取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】上饒市委、市政府在上饒召開上饒市全面展開新能源工程動員大會,會議動員各方力量,迅速全面展開新能源工程工作.某企業(yè)響應號召,對現(xiàn)有設備進行改造,為了分析設備改造前后的效果,現(xiàn)從設備改造前后生產的大量產品中各抽取了200件產品作為樣本,檢測一項質量指標值,若該項質量指標值落在內的產品視為合格品,否則為不合格品.圖1是設備改造前的樣本的頻率分布直方圖,表1是設備改造后的樣本的頻數(shù)分布表.
(1)完成列聯(lián)表,并判斷是否有的把握認為該企業(yè)生產的這種產品的質量指標值與設備改造有關;
設備改造前 | 設備改造后 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
(2)根據圖1和表1提供的數(shù)據,試從產品合格率的角度對改造前后設備的優(yōu)劣進行比較;
(3)根據市場調查,設備改造后,每生產一件合格品企業(yè)可獲利200元,一件不合格品虧損150元,用頻率估計概率,則生產1000件產品企業(yè)大約能獲利多少元?
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年2月22日.在平昌冬奧會短道速滑男子500米比賽中.中國選手武大靖以連續(xù)打破世界紀錄的優(yōu)異表現(xiàn),為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造中國男子冰上競速項目在冬奧會金牌零的突破.某高校為調查該校學生在冬奧會期間累計觀看冬奧會的時間情況.收集了200位男生、100位女生累計觀看冬奧會時間的樣本數(shù)據(單位:小時).又在100位女生中隨機抽取20個人.已知這20位女生的數(shù)據莖葉圖如圖所示.
(1)將這20位女生的時間數(shù)據分成8組,分組區(qū)間分別為,在答題卡上完成頻率分布直方圖;
(2)以(1)中的頻率作為概率,求1名女生觀看冬奧會時間不少于30小時的概率;
(3)以(1)中的頻率估計100位女生中累計觀看時間小于20個小時的人數(shù).已知200位男生中累計觀看時間小于20小時的男生有50人請完成答題卡中的列聯(lián)表,并判斷是否有99 %的把握認為“該校學生觀看冬奧會累計時間與性別有關”.
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
附:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司擬設計一個扇環(huán)形狀的花壇(如圖所示),該扇環(huán)是由以點為圓心的兩個同心圓弧和延長后通過點,的兩條線段圍成.設圓弧和圓弧所在圓的半徑分別為米,圓心角為θ(弧度).
(1)若,,求花壇的面積;
(2)設計時需要考慮花壇邊緣(實線部分)的裝飾問題,已知直線部分的裝飾費用為60元/米,弧線部分的裝飾費用為90元/米,預算費用總計1200元,問線段AD的長度為多少時,花壇的面積最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2022年北京冬奧會的申辦成功與“3億人上冰雪”口號的提出,將冰雪這個冷項目迅速炒“熱”.北京某綜合大學計劃在一年級開設冰球課程,為了解學生對冰球運動的興趣,隨機從該校一年級學生中抽取了100人進行調查,其中女生中對冰球運動有興趣的占,而男生有10人表示對冰球運動沒有興趣額.
(1)完成列聯(lián)表,并回答能否有的把握認為“對冰球是否有興趣與性別有關”?
有興趣 | 沒興趣 | 合計 | |
男 | 55 | ||
女 | |||
合計 |
(2)若將頻率視為概率,現(xiàn)再從該校一年級全體學生中,采用隨機抽樣的方法每次抽取1名學生,抽取5次,記被抽取的5名學生中對冰球有興趣的人數(shù)為,若每次抽取的結果是相互獨立的,求的分布列,期望和方差.
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),對于任意的 ,都有, 當時,,且.
( I ) 求的值;
(II) 當時,求函數(shù)的最大值和最小值;
(III) 設函數(shù),判斷函數(shù)g(x)最多有幾個零點,并求出此時實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com