精英家教網 > 高中數學 > 題目詳情

已知不等式x2-3x+t<0的解集為{x|1<x<m,x∈R}
(1)求t,m的值;
(2)若函數f(x)=-x2+ax+4在區(qū)間(-∞,1]上遞增,求關于x的不等式loga(-mx2+3x+2-t)<0的解集.

解:(1)∵不等式x2-3x+t<0的解集為{x|1<x<m,x∈R}

(2)∵f(x)=在(-∞,1]上遞增,

,
由a≥2,可知0<-2x2+3x<1
由2x2-3x<0,得0<x<
由2x2-3x+1>0得x<或x>1
故原不等式的解集為{x|0<x<或1<x<}
分析:(1)由不等式與相應方程的關系得:1,m是方程x2-3x+t=0的兩個根,再依據根與系數的關系即可求得t,m的值;
(2)根據函數f(x)=-x2+ax+4在區(qū)間(-∞,1]上遞增,其圖象的對稱軸應在直線x=1的右側,從而得到a的范圍,再將原不等式利用對數函數的單調性去掉對數符號轉化為整式不等式求解即可.
點評:本小題主要考查一元二次不等式與一元二次方程、對數不等式的解法等基礎知識,考查運算求解能力,考查化歸與轉化思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知不等式x2-3x+t<0的解集為{x|1<x<m,x∈R}
(1)求t,m的值;
(2)若函數f(x)=-x2+ax+4在區(qū)間(-∞,1]上遞增,求關于x的不等式loga(-mx2+3x+2-t)<0的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知不等式x2-3x+m<0的解集為{x|1<x<n,n∈R},函數f(x)=-x2+ax+4.
(1)求m,n的值;
(2)若y=f(x)在(-∞,1]上遞增,解關于x的不等式loga(-nx2+3x+2-m)<0

查看答案和解析>>

科目:高中數學 來源: 題型:

已知不等式x2–3x+t<0的解集為{x|1<x<m, m??R}

(1)求t, m的值;

(2)若f(x)= –x2+ax+4在(–∞,1)上遞增,求不等式log a (–mx2+3x+2–t)<0的解集。

查看答案和解析>>

科目:高中數學 來源:金山區(qū)一模 題型:解答題

已知不等式x2-3x+t<0的解集為{x|1<x<m,x∈R}
(1)求t,m的值;
(2)若函數f(x)=-x2+ax+4在區(qū)間(-∞,1]上遞增,求關于x的不等式loga(-mx2+3x+2-t)<0的解集.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年福建省廈門二中高二(上)數學周末練習7(文科)(解析版) 題型:解答題

已知不等式x2-3x+t<0的解集為{x|1<x<m,x∈R}
(1)求t,m的值;
(2)若函數f(x)=-x2+ax+4在區(qū)間(-∞,1]上遞增,求關于x的不等式loga(-mx2+3x+2-t)<0的解集.

查看答案和解析>>

同步練習冊答案