【題目】(Ⅰ)如表所示是某市最近5年個人年平均收入表節(jié)選.求y關(guān)于x的回歸直線方程,并估計第6年該市的個人年平均收入(保留三位有效數(shù)字).
年份x | 1 | 2 | 3 | 4 | 5 |
收入y(千元) | 21 | 24 | 27 | 29 | 31 |
其中,, 附1:= ,=﹣
(Ⅱ)下表是從調(diào)查某行業(yè)個人平均收入與接受專業(yè)培訓(xùn)時間關(guān)系得到2×2列聯(lián)表:
受培時間一年以上 | 受培時間不足一年 | 總計 | |
收入不低于平均值 | 60 | 20 | |
收入低于平均值 | 10 | 20 | |
總計 | 100 |
完成上表,并回答:能否在犯錯概率不超過0.05的前提下認(rèn)為“收入與接受培訓(xùn)時間有關(guān)系”.
附2:
P(K2≥k0) | 0.50 | 0.40 | 0.10 | 0.05 | 0.01 | 0.005 |
k0 | 0.455 | 0.708 | 2.706 | 3.841 | 6.635 | 7.879 |
附3:
K2=.(n=a+b+c+d)
【答案】(Ⅰ),;(Ⅱ)列聯(lián)表見解析,在犯錯概率不超過的前提下我們認(rèn)為“收
【解析】分析:(I)由表數(shù)據(jù)求得樣本中心點(diǎn),利用最小二乘法求出線性回歸方程的系數(shù),將樣本中心點(diǎn)代入,求出的值,寫出線性回歸方程;
(II)由數(shù)據(jù)將表填完整,通過所給的數(shù)據(jù)計算K2觀測值,同臨界值表中的數(shù)據(jù)進(jìn)行比較,可得到結(jié)論.
詳解:
(Ⅰ)由已知中數(shù)據(jù)可得:,
,
∴,
當(dāng)x=6時,=33.9.
即第6年該市的個人年平均收入約為33.9千元;
(Ⅱ)某行業(yè)個人平均收入與接受專業(yè)培訓(xùn)時間關(guān)系得到2×2列聯(lián)表:
受培時間一年以上 | 受培時間不足一年 | 合計 | |
收入不低于平均值 | 60 | 20 | 80 |
收入低于平均值 | 10 | 10 | 20 |
合計 | 70 | 30 | 100 |
假設(shè):“收入與接受培訓(xùn)時間沒有關(guān)系”
根據(jù)列聯(lián)表中的數(shù)據(jù),得到K2的觀測值為
∴
故在犯錯概率不超過0.05的前提下我們認(rèn)為“收入與接受培訓(xùn)時間有關(guān)系”.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)M的極坐標(biāo)為(2 , ),曲線C的參數(shù)方程為 (α為參數(shù)).
(1)直線l過M且與曲線C相切,求直線l的極坐標(biāo)方程;
(2)點(diǎn)N與點(diǎn)M關(guān)于y軸對稱,求曲線C上的點(diǎn)到點(diǎn)N的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)既是奇函數(shù)又在(﹣1,1)上是減函數(shù)的是( 。
A. B.
C. y=x﹣1D. y=tanx
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,曲線C:(x﹣1)2+y2=1.直線l經(jīng)過點(diǎn)P(m,0),且傾斜角為 .以O(shè)為極點(diǎn),以x軸正半軸為極軸,建立坐標(biāo)系.
(Ⅰ)寫出曲線C的極坐標(biāo)方程與直線l的參數(shù)方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點(diǎn),且|PA||PB|=1,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),數(shù)列{bn}滿足:bn+1=2bn+2,且an+1﹣an=bn;
(1)求證:數(shù)列{bn+2}是等比數(shù)列;
(2)求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為,且,圓與軸交于點(diǎn),,為橢圓上的動點(diǎn),,面積最大值為.
(1)求圓與橢圓的方程;
(2)圓的切線交橢圓于點(diǎn),,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人玩抽紅包游戲,現(xiàn)將裝有5元、3元、2元的紅包各3個,放入一不透明的暗箱中并攪拌均勻,供3人隨機(jī)抽。 (Ⅰ)若甲隨機(jī)從中抽取3個紅包,求甲抽到的3個紅包中裝有的金額總數(shù)小于10元的概率.
(Ⅱ)若甲、乙、丙按下列規(guī)則抽。
①每人每次只抽取一個紅包,抽取后不放回;
②甲第一個抽取,甲抽完后乙再抽取,丙抽完后甲再抽取…,依次輪流;
③一旦有人抽到裝有5元的紅包,游戲立即結(jié)束.
求甲抽到的紅包的個數(shù)X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù))與的圖象上存在關(guān)于軸對稱的點(diǎn),則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,,底面,,直線與底面所成的角為,分別是的中點(diǎn).
(1)求證:直線平面;
(2)若,求證:直線平面;
(3)若,求棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com