已知,,求(用a、b表示).

答案:
解析:


提示:

提示:由已知可解得,,而


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,且tanBtanC-
3
(tanB+tanC)=1

(Ⅰ)求角A的大;
(Ⅱ)現(xiàn)給出三個條件:①a=1;②b=2sinB;③2c-(
3
+1)b=0
.試從中選擇兩個條件求△ABC的面積(注:只需選擇一個方案答題,如果用多種方案答題,則按第一種方案給分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知⊙M經(jīng)過點F1(0,-c),F(xiàn)2(0,c),A(
3
c,0)三點,其中c>0.
(1)求⊙M的標(biāo)準(zhǔn)方程(用含c的式子表示);
(2)已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)(其中a2-b2=c2)的左、右頂點分別為D、B,⊙M與x軸的兩個交點分別為A、C,且A點在B點右側(cè),C點在D點右側(cè),求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•朝陽區(qū)一模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的中心在坐標(biāo)原點O,一條準(zhǔn)線的方程是x=4,過橢圓的左焦點F,且方向向量為
a
=(1,1)的直線l交橢圓于A、B兩點,AB的中點為M.
(Ⅰ)求直線OM的斜率(用a、b表示);
(Ⅱ)直線AB與OM的夾角為α,當(dāng)tanα=7時,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•朝陽區(qū)一模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),中心在坐標(biāo)原點O,一條準(zhǔn)線的方程是x=1,過橢圓的左焦點F,且方向向量為
a
=(1,1)的直線l交橢圓于A、B兩點,AB的中點為M.
(Ⅰ)求直線OM的斜率(用a、b表示);
(Ⅱ)直線AB與OM的夾角為α,當(dāng)tanα=2時,求橢圓的方程;
(Ⅲ)當(dāng)A、B兩點分別位于第一、三象限時,求橢圓短軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•崇明縣二模)如圖,已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0),M為橢圓上的一個動點,F(xiàn)1、F2分別為橢圓的左、右焦點,A、B分別為橢圓的一個長軸端點與短軸的端點.當(dāng)MF2⊥F1F2時,原點O到直線MF1的距離為
1
3
|OF1|.
(1)求a,b滿足的關(guān)系式;
(2)當(dāng)點M在橢圓上變化時,求證:∠F1MF2的最大值為
π
2
;
(3)設(shè)圓x2+y2=r2(0<r<b),G是圓上任意一點,過G作圓的切線交橢圓于Q1,Q2兩點,當(dāng)OQ1⊥OQ2時,求r的值.(用b表示)

查看答案和解析>>

同步練習(xí)冊答案