定義f(M)=(m,n,p),其中M是△ABC內(nèi)一點(diǎn),m、n、p分別是△MBC、△MCA、△MAB的面積,已知△ABC中,數(shù)學(xué)公式,∠BAC=30°,數(shù)學(xué)公式,則數(shù)學(xué)公式的最小值是


  1. A.
    8
  2. B.
    9
  3. C.
    16
  4. D.
    18
D
分析:由向量的數(shù)量積公式得 ,∴,由題意得,x+y=1-=.=2(5+,即可得答案.
解答:∵,∠BAC=30°,
所以由向量的數(shù)量積公式得 ,

,
由題意得,
x+y=1-=
==2(5+,等號(hào)在x=,y=取到,所以最小值為18.
故選D.
點(diǎn)評(píng):本題考查基本不等式的應(yīng)用和余弦定理,解題時(shí)要認(rèn)真審題,注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義f(x)是R上的奇函數(shù)且為減函數(shù),若m+n≥0,給出下列不等式:(1)f(m)•f(-m)≤0;(2)f(m)+f(n)≥f(-m)+f(-n);(3)f(n)•f(-n)≥0;(4)f(m)+f(n)≤f(-m)+f(-n)其中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練10練習(xí)卷(解析版) 題型:填空題

設(shè)M是△ABC內(nèi)一點(diǎn),且·=2,∠BAC=30°,定義f(M)=(m,n,p),其中m、n、p分別是△MBC、△MCA、△MAB的面積,若f(M)=(,x,y),則+的最小值是  .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年遼寧省沈陽市四校協(xié)作體高三12月月考數(shù)學(xué)文卷 題型:選擇題

設(shè)M是△ABC內(nèi)一點(diǎn),且 =2,∠BAC=30°定義f(M)=(m,n,p),其中m,n,p分別是△MBC,△MCA, △MAB的面積.若f(M)=(,x,y),則的最小值是

A.20              B.18                  C.16                 D.14

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省淮安市盱眙縣新海高級(jí)中學(xué)高三(上)10月學(xué)情調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知函數(shù)f(x)定義在D=[-m,m](m>2)上且f(x)>0,對(duì)于任意實(shí)數(shù)x,y,x+y∈D,都有f(x+y)=f(x)f(y),且f(1)=1006,設(shè)函數(shù)的最大值和最小值分別為M和N,則M+N=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省某重點(diǎn)中學(xué)高一(上)10月月考數(shù)學(xué)試卷(解析版) 題型:選擇題

定義f(x)是R上的奇函數(shù)且為減函數(shù),若m+n≥0,給出下列不等式:(1)f(m)•f(-m)≤0;(2)f(m)+f(n)≥f(-m)+f(-n);(3)f(n)•f(-n)≥0;(4)f(m)+f(n)≤f(-m)+f(-n)其中正確的是( )
A.(1)和(4)
B.(2)和(3)
C.(1)和(3)
D.(2)和(4)

查看答案和解析>>

同步練習(xí)冊(cè)答案