已知雙曲線數(shù)學(xué)公式-數(shù)學(xué)公式=1(a>0,b>0)的左頂點(diǎn)與拋物線y2=2px的焦點(diǎn)的距離為4,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為(-2,-1),則雙曲線的焦距為


  1. A.
    2數(shù)學(xué)公式
  2. B.
    2數(shù)學(xué)公式
  3. C.
    4數(shù)學(xué)公式
  4. D.
    4數(shù)學(xué)公式
B
分析:根據(jù)題意,點(diǎn)(-2,-1)在拋物線的準(zhǔn)線上,結(jié)合拋物線的性質(zhì),可得p=4,進(jìn)而可得拋物線的焦點(diǎn)坐標(biāo),依據(jù)題意,可得雙曲線的左頂點(diǎn)的坐標(biāo),即可得a的值,由點(diǎn)(-2,-1)在雙曲線的漸近線上,可得漸近線方程,進(jìn)而可得b的值,由雙曲線的性質(zhì),可得c的值,進(jìn)而可得答案.
解答:根據(jù)題意,雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為(-2,-1),
即點(diǎn)(-2,-1)在拋物線的準(zhǔn)線上,又由拋物線y2=2px的準(zhǔn)線方程為x=-,則p=4,
則拋物線的焦點(diǎn)為(2,0);
則雙曲線的左頂點(diǎn)為(-2,0),即a=2;
點(diǎn)(-2,-1)在雙曲線的漸近線上,則其漸近線方程為y=±x,
由雙曲線的性質(zhì),可得b=1;
則c=,則焦距為2c=2
故選B.
點(diǎn)評(píng):本題考查雙曲線與拋物線的性質(zhì),注意題目“雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點(diǎn)坐標(biāo)為(-2,-1)”這一條件的運(yùn)用,另外注意題目中要求的焦距即2c,容易只計(jì)算到c,就得到結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F,右準(zhǔn)線與一條漸近線交于點(diǎn)A,△OAF的面積為 (O為原點(diǎn)),則兩條漸近線的夾角為(    )

A.30°             B.45°              C.60°              D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山西省晉中市昔陽(yáng)中學(xué)高二(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省六安市壽縣迎河中學(xué)高二(上)第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省南通市啟東市匯龍中學(xué)高二(上)第二次學(xué)情調(diào)查數(shù)學(xué)試卷(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓x2+y2=5上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年貴州省冊(cè)亨縣民族中學(xué)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的離心率為,右準(zhǔn)線方程為
(Ⅰ)求雙曲線C的方程;
(Ⅱ)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)在圓x2+y2=5上,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案