【題目】已知f(x)=kx+b的圖象過點(diǎn)(2,1),且b2﹣6b+9≤0
(1)求函數(shù)f(x)的解析式;
(2)若a>0,解關(guān)于x的不等式x2﹣(a2+a+1)x+a3+3<f(x).

【答案】
(1)解:(1)∵f(x)=kx+b的圖象過點(diǎn)(2,1),且b2﹣6b+9≤0,

,解得b=3,k=﹣1.

∴f(x)=﹣x+3.


(2)解:∵a>0,x2﹣(a2+a+1)x+a3+3<f(x),

∴﹣x+3>x2﹣(a2+a+1)x+a3+3,

∴x2﹣(a2+a)x+a3<0,

解方程x2﹣(a2+a)x+a3=0,得x1=a, ,

當(dāng)0<a<1時(shí),原不等式的解集為:{x|a2<x<a};

當(dāng)a=1時(shí),原不等式的解集為:{x|x≠1};

當(dāng)a>1時(shí),原不等式的解集為:{x|a<x<a2}


【解析】(1)由已知得 ,由此能求出f(x).(2)原不等式等價(jià)于x2﹣(a2+a)x+a3<0,由此能求出關(guān)于x的不等式x2﹣(a2+a+1)x+a3+3<f(x).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某幾何體的三視圖中,俯視圖是邊長(zhǎng)為2的正三角形,正視圖和左視圖分別為直角梯形和直角三角形,則該幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,已知四邊形是由直角△和直角梯形拼接而成的,其中

.且點(diǎn)為線段的中點(diǎn), , 現(xiàn)將△沿進(jìn)行翻折,使得二面角

的大小為,得到圖形如圖(2)所示,連接,點(diǎn)分別在線段上.

(1)證明: ;

(2)若三棱錐的體積為四棱錐體積的,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|< )在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入的部分?jǐn)?shù)據(jù)如表:

x

ωx+φ

0

π

Asin(ωx+φ)

0

2

0

﹣2


(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)全,并直接寫出函數(shù)f(x)的解析式;
(2)當(dāng)x∈[0, ]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為平行四邊形, , , 點(diǎn)在底面內(nèi)的射影在線段上,且, , 的中點(diǎn), 在線段上,且.

(1)當(dāng)時(shí),證明:平面平面;

(2)當(dāng)時(shí),求平面與平面所成的二面角的正弦值及四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域?yàn)?/span>,如果存在正實(shí)數(shù),使得對(duì)任意,都有,且恒成立,則稱函數(shù)上的“的型增函數(shù)”,已知是定義在上的奇函數(shù),且在時(shí), ,若上的“2017的型增函數(shù)”,則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= (a>0)
(1)若a=1,證明:y=f(x)在R上單調(diào)遞減;
(2)當(dāng)a>1時(shí),討論f(x)零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若,當(dāng)時(shí),求函數(shù)的最大值;

(3)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組在電腦上進(jìn)行人工降雨模擬實(shí)驗(yàn),準(zhǔn)備用A、B、C三種人工降雨方式分別對(duì)甲、乙、丙三地實(shí)施人工降雨,其實(shí)驗(yàn)統(tǒng)計(jì)結(jié)果如下

方式

實(shí)施地點(diǎn)

大雨

中雨

小雨

模擬實(shí)驗(yàn)次數(shù)

A

2次

6次

4次

12次

B

3次

6次

3次

12次

C

2次

2次

8次

12次

假定對(duì)甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,且不考慮洪澇災(zāi)害,請(qǐng)根據(jù)統(tǒng)計(jì)數(shù)據(jù):

1)求甲、乙、丙三地都恰為中雨的概率;

2考慮不同地區(qū)的干旱程度,當(dāng)雨量達(dá)到理想狀態(tài)時(shí),能緩解旱情,若甲、丙地需中雨或大雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),記甲、乙、丙三地中緩解旱情的個(gè)數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望

查看答案和解析>>

同步練習(xí)冊(cè)答案