已知函數(shù)數(shù)學(xué)公式,若f[f(0)]=4a,則實數(shù)a的值為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    2
  4. D.
    9
C
分析:先由已知函數(shù)可求出f(0),然后根據(jù)f(0)的值與1的大小比較進一步確定函數(shù)的對應(yīng)關(guān)系,即可求解
解答:由題意可得f(0)=2
∴f[f(0)]=f(2)=4+2a=4a
∴a=2
故選C
點評:本特納主要考查了分段函數(shù)的函數(shù)值的求解的應(yīng)用,屬于基礎(chǔ)是試題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知三次函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=3x2-3ax,f(0)=b,a、b為實數(shù).
(1)若曲線y=f(x)在點(a+1,f(a+1))處切線的斜率為12,求a的值;
(2)若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,且1<a<2,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳一模)已知函數(shù)f(x)=ax+x2-xlna-b(a,b∈R,a>1),e是自然對數(shù)的底數(shù).
(1)試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(2)當a=e,b=4時,求整數(shù)k的值,使得函數(shù)f(x)在區(qū)間(k,k+1)上存在零點;
(3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),若f(x)滿足:(x-1)[f′(x)-f(x)]>0,f(2-x)=f(x)e2-2x,則下列判斷一定正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為[0,1],且f(x)的圖象連續(xù)不間斷.若函數(shù)f(x)滿足:對于給定的m(m∈R且0<m<1),存在x0∈[0,1-m],使得f(x0)=f(x0+m),則稱f(x)具有性質(zhì)P(m).
(Ⅰ)已知函數(shù)f(x)=(x-
1
2
2,x∈[0,1],判斷f(x)是否具有性質(zhì)P(
1
3
),并說明理由;
(Ⅱ)已知函數(shù) f(x)=
-4x+1,0≤x≤
1
4
4x-1,
1
4
<x<
3
4
-4x+5,
3
4
≤x≤1
,若f(x)具有性質(zhì)P(m),求m的最大值;
(Ⅲ)若函數(shù)f(x)的定義域為[0,1],且f(x)的圖象連續(xù)不間斷,又滿足f(0)=f(1),求證:對任意k∈N*且k≥2,函數(shù)f(x)具有性質(zhì)P(
1
k
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),x∈R,F(x)=
f(x)(x>0)
-f(x)(x<0)

(1)若f(-1)=0,且函數(shù)f(x)的值域為[0,+∞),求F(x)的表達式;
(2)在(1)的條件下,當x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)設(shè)m•n<0,m+n>0,a>0且f(x)為偶函數(shù),判斷F(m)+F(n)能否大于零.

查看答案和解析>>

同步練習冊答案