如圖,P是拋物線(xiàn)C:y=x2上一點(diǎn),直線(xiàn)l過(guò)點(diǎn)P且與拋物線(xiàn)C交于另一點(diǎn)Q,
(Ⅰ)若直線(xiàn)l與過(guò)點(diǎn)P的切線(xiàn)垂直,求線(xiàn)段PQ中點(diǎn)M的軌跡方程;
(Ⅱ)若直線(xiàn)l不過(guò)原點(diǎn)且與x軸交于點(diǎn)S,與y軸交于點(diǎn)T,試求的取值范圍。

解:(Ⅰ)設(shè)P(x1,y1),Q(x2,y2),M(x0,y0),
依題意x1≠0,y1>0,y2>0,
由y=x2, ①
得y′=x,
∴過(guò)點(diǎn)P的切線(xiàn)的斜率k=x1,
∴直線(xiàn)l的斜率kl=,
∴直線(xiàn)l的方程為,
聯(lián)立①②消去y,得,
∵M(jìn)是PQ的中點(diǎn),
,
消去x1,得,
∴PQ中點(diǎn)M的軌跡方程為;
(Ⅱ)設(shè)直線(xiàn)l:y=kx+b,
依題意k≠0,b≠0,則T(0,b),
分別過(guò)P、Q作PP′⊥x軸,QQ′⊥y軸,垂足分別為P′、Q′,
,
消去x,得y2-2(k2+b)y+b2=0, ③
則y1+y2=2(k2+b),y1y2=b2,
,
∵y1、y2可取一切不相等的正數(shù),
的取值范圍是(2,+∞)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,P是拋物線(xiàn)C:y=
12
x2上一點(diǎn),直線(xiàn)l過(guò)點(diǎn)P且與拋物線(xiàn)C交于另一點(diǎn)Q.若直線(xiàn)l與過(guò)點(diǎn)P的切線(xiàn)垂直,求線(xiàn)段PQ中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,P是拋物線(xiàn)C:y=
1
2
x2上一點(diǎn),直線(xiàn)l過(guò)點(diǎn)P且與拋物線(xiàn)C交于另一點(diǎn)Q.
(Ⅰ)若直線(xiàn)l與過(guò)點(diǎn)P的切線(xiàn)垂直,求線(xiàn)段PQ中點(diǎn)M的軌跡方程;
(Ⅱ)若直線(xiàn)l不過(guò)原點(diǎn)且與x軸交于點(diǎn)S,與y軸交于點(diǎn)T,試求
|ST|
|SP|
+
|ST|
|SQ|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,P是拋物線(xiàn)C:y=
12
x2上一點(diǎn),直線(xiàn)l過(guò)點(diǎn)P并與拋物線(xiàn)C在點(diǎn)P的切線(xiàn)垂直,l與拋物線(xiàn)C相交于另一點(diǎn)Q.
(Ⅰ)當(dāng)點(diǎn)P的橫坐標(biāo)為2時(shí),求直線(xiàn)l的方程;
(Ⅱ)當(dāng)點(diǎn)P在拋物線(xiàn)C上移動(dòng)時(shí),求線(xiàn)段PQ中點(diǎn)M的軌跡方程,并求點(diǎn)M到x軸的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,P是拋物線(xiàn)C:y=
12
x2上橫坐標(biāo)大于零的一點(diǎn),直線(xiàn)l過(guò)點(diǎn)P并與拋物線(xiàn)C在點(diǎn)P處的切線(xiàn)垂直,直線(xiàn)l與拋物線(xiàn)C相交于另一點(diǎn)Q.當(dāng)點(diǎn)P的橫坐標(biāo)為2時(shí),求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,P是拋物線(xiàn)C:x2=2y上一點(diǎn),F(xiàn)為拋物線(xiàn)的焦點(diǎn),直線(xiàn)l過(guò)點(diǎn)P且與拋物線(xiàn)交于另一點(diǎn)Q,已知P(x1,y1),Q(x2,y2).
(1)若l經(jīng)過(guò)點(diǎn)F,求弦長(zhǎng)|PQ|的最小值;
(2)設(shè)直線(xiàn)l:y=kx+b(k≠0,b≠0)與x軸交于點(diǎn)S,與y軸交于點(diǎn)T
①求證:
|ST|
|SP|
+
|ST|
|SQ|
=|b|(
1
y1
+
1
y2
)

②求
|ST|
|SP|
+
|ST|
|SQ|
的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案