設(shè)函數(shù)數(shù)學公式,曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0,
(1)求y=f(x)的解析式,并求其單調(diào)區(qū)間;
(2)用陰影標出曲線y=f(x)與此切線以及x軸所圍成的圖形,并求此圖形的面積.

解:(1)求導函數(shù),可得
∵曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0,
,f(2)=
,∴a=1,b=3
,
∴函數(shù)的單調(diào)增區(qū)間為(-∞,0),(0,+∞);
(2)曲線y=f(x)與此切線以及x軸所圍成的圖形,如圖所示

由7x-4y-12=0,可得y=,令y=0,可得x=
∴陰影部分的面積為=(=-+3ln
分析:(1)求導函數(shù),利用切線方程,建立方程組,即可求y=f(x)的解析式,從而可得單調(diào)區(qū)間;
(2)作出函數(shù)圖象,可得曲線y=f(x)與此切線以及x軸所圍成的圖形,利用定積分,可求面積.
點評:本題考查導數(shù)知識的運用,考查導數(shù)的幾何意義,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:《第1章 導數(shù)及其應用》2013年單元測試卷(2)(解析版) 題型:解答題

設(shè)函數(shù),曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)上任一點處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年內(nèi)蒙古包頭33中高三(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù),曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)上任一點處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年四川省南充市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

設(shè)函數(shù),曲線y=f(x)在點(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖象是一個中心對稱圖形,并求其對稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學第一輪復習鞏固與練習:導數(shù)及其應用(解析版) 題型:解答題

設(shè)函數(shù),曲線y=f(x)在點(2,f(2))處的切線方程為7x-4y-12=0.
(1)求y=f(x)的解析式;
(2)證明:曲線y=f(x)上任一點處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學(文科)一輪復習講義:2.9 導數(shù)的概念及運算(解析版) 題型:解答題

設(shè)函數(shù),曲線y=f(x)在點(2,f(2))處的切線方程為y=3.
(Ⅰ)求f(x)的解析式:
(Ⅱ)證明:函數(shù)y=f(x)的圖象是一個中心對稱圖形,并求其對稱中心;
(Ⅲ)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值.

查看答案和解析>>

同步練習冊答案