已知雙曲線C:x2-y2=1的左右焦點分別為F1、F2,P是C上一點,∠F1PF2=60°,
①求F1、F2的坐標;
②求雙曲線的準線方程及離心率;
③求△F1PF2的面積.
分析:根據(jù)雙曲線的標準方程,求出幾何量a,b,c,可得①求F1、F2的坐標;②求雙曲線的準線方程及離心率;③利用雙曲線的定義、余弦定理,根據(jù)面積公式,即可求△F1PF2的面積.
解答:解:①∵雙曲線C:x2-y2=1的左右焦點分別為F1、F2,
∴a=b=1,
∴c=
2
,
∴F1(-
2
,0)、F2(-
2
,0);
②雙曲線的準線方程x=±
a2
c
=±
1
2
=±
2
2
,離心率e=
c
a
=
2
;
③設(shè)|F1P|=m,|PF2|=n,則m-n=2(1)
在△F1PF2中,8=m2+n2-2mncos60°=m2+n2-mn(2),
(2)-(1)2:mn=4,
∴△F1PF2的面積S=
1
2
mnsin60°
=
1
2
•4•
3
2
=
3
點評:本題考查雙曲線的幾何性質(zhì),考查三角形面積的計算,考查雙曲線的定義、余弦定理,正確運用雙曲線的標準方程是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:x2-
y2
4
=1,過點P(1,1)作直線l,使l與C有且只有一個公共點,則滿足上述條件的直線l共有( 。
A、1條B、2條C、3條D、4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:x2-
y2
b2
=1(b>0),過點M(1,1)作直線l交雙曲線C于A、B兩點,使得M是線段AB的中點,則實數(shù)b取值范圍為(  )
A、(1,
2
B、(-1,0)∪(0,1)
C、(0,1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

請考生在(1)(2)中任選一題作答,每小題12分.如都做,按所做的第(1)題計分.
(1)如圖,在△ABC中,AB=AC,∠C=72°,⊙O過A、B兩點且與BC相切于點B,與AC交于點D,連接B、D,若BC=
5
-1
,求AC的長.
(2)已知雙曲線C:x2-y2=2,以雙曲線的左焦點F為極點,射線FO(O為坐標原點)為極軸,點M為雙曲線上任意一點,其極坐標是(ρ,θ),試根據(jù)雙曲線的定義求出ρ與θ的關(guān)系式(將ρ用θ表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:x2-
y2b2
=1(b>0,b≠1)
的左右焦點為F1,F(xiàn)2,過點F1的直線與雙曲線C左支相交于A,B兩點,若|AF2|+|BF2|=2|AB|,則|AB|為
 

查看答案和解析>>

同步練習(xí)冊答案