已知數(shù)列{an}滿足
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)An為數(shù)列的前n項(xiàng)積,是否存在實(shí)數(shù)a,使得不等式對一切n∈N*都成立?若存在,求出的取值范圍,若不存在,請說明理由.
【答案】分析:(1)先求a2,然后求出an+1的表達(dá)式,兩式作差可得an+1-an=(n≥2),從而求出數(shù)列{an}的通項(xiàng)公式;
(2)令 ,然后判定g(n)的單調(diào)性,求出最大值,使a大于最大值即可.
解答:解:(1)∵
∴a2=a1=1

∴an+1-an=(n≥2)



(2)據(jù)已知
則:,
=≤1
故n>1時(shí),g(n)單調(diào)遞減,于是
又g(1)==g(2)
要使不等式對一切n∈N*都成立只需即可.
點(diǎn)評:本題主要考查了數(shù)列與不等式的綜合運(yùn)用,以及恒成立問題,同時(shí)考查了計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊答案