16.已知復(fù)數(shù)z滿足z=$\frac{1}{1+i}$(i為虛數(shù)單位),則z=( 。
A.$\frac{1-i}{2}$B.$\frac{1+i}{2}$C.1-iD.1+i

分析 直接利用分子分母同時乘以分母的共軛復(fù)數(shù)得答案.

解答 解:z=$\frac{1}{1+i}$=$\frac{1-i}{(1+i)(1-i)}=\frac{1}{2}-\frac{1}{2}i$,
故選:A.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.定義在(0,+∞)上的函數(shù)f(x)滿足對于任意的m,n∈R+,都有f(mn)=f(m)+f(n)成立,當(dāng)x>1時,f(x)<0.
(1)判斷f(x)的單調(diào)性,并證明;
(2)若f(6)=-1,解不等式f(x+3)<-2-f(x);
(3)比較f($\frac{m+n}{2}$)與$\frac{1}{2}$[f(m)+f(n)]的大小(其中m,n>0,m≠n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a>0,x,y滿足線性約束條件$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{ax-y-3a≤0}\end{array}\right.$,若z=2x+y的最小值為1,則a=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知P(x,y)為區(qū)域$\left\{\begin{array}{l}{x+y≥0}\\{x-y≥0}\\{x≤2}\\{\;}\end{array}\right.$內(nèi)的任意一點,則z=2x-y的取值范圍是[0,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且cosB+cosAcosC-$\sqrt{3}$sinAcosC=0.
(Ⅰ)求cosC的值;
(Ⅱ)若c=2時,求△ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某研究所計劃利用“神七”宇宙飛船進(jìn)行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品A、B若干件,該所要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預(yù)計產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:
每件產(chǎn)品A每件產(chǎn)品B
研制成本、搭載費用之和(百萬元)21.5計劃最大資金額15(百萬元)
產(chǎn)品重量(千克)11.5最大搭載重量12(千克)
預(yù)計收益(百元)1000120010200(百元)
并且B產(chǎn)品的數(shù)量不超過A產(chǎn)品數(shù)量的2倍.如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計收益達(dá)到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若x,y滿足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{y≥0}\end{array}\right.$,則z=|y-2x|的最大值為( 。
A.8B.6C.4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一個盒子里裝有相同大小的黑球10個,紅球12個,白球4個,從中任取2個,其中白球為X,則下列算式中等于$\frac{{C}_{22}^{1}{C}_{4}^{1}+{C}_{22}^{2}}{{C}_{26}^{2}}$的是( 。
A.P(0<X≤2)B.P(X≤1)C.P(X=1)D.P(X=2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若tanα=2,求下列各式的值:
(1)$\frac{2cosα+3sinα}{cosα+2sinα}$;
(2)sinαcosα

查看答案和解析>>

同步練習(xí)冊答案