【題目】給出下列命題:

①正切函數(shù)圖象的對(duì)稱中心是唯一的;

②若函數(shù)的圖像關(guān)于直線對(duì)稱,則這樣的函數(shù)是不唯一的;

③若,是第一象限角,且,則;

④若是定義在上的奇函數(shù),它的最小正周期是,則

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】

①中,由正切函數(shù)的性質(zhì)可知,正切函數(shù)的對(duì)稱中心是不唯一的,所以是錯(cuò)誤的;

②中,圖象關(guān)于直線的函數(shù)由多個(gè),所以是正確的;

③中,如,此時(shí),此時(shí),所以不正確;④中,由,,所以,所以正確,

由題意,①中,由正切函數(shù)的性質(zhì)可知,正切函數(shù)的對(duì)稱中心是不唯一的,所以是錯(cuò)誤的;

②中,圖象關(guān)于直線的函數(shù)由多個(gè),所以是正確的;

③中,若是第一象限角,且

,此時(shí),此時(shí),所以不正確;中,若函數(shù)是定義在上的奇函數(shù),它的最小正周期為,

,,所以,所以正確,

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班主任對(duì)該班22名學(xué)生進(jìn)行了作業(yè)量的調(diào)查,在喜歡玩電腦游戲的12人中,有10人認(rèn)為作業(yè)多,2人認(rèn)為作業(yè)不多;在不喜歡玩電腦游戲的10人中,有3人認(rèn)為作業(yè)多,7人認(rèn)為作業(yè)不多.

(1)根據(jù)以上數(shù)據(jù)建立一個(gè)列聯(lián)表.

(2)對(duì)于該班學(xué)生,能否在犯錯(cuò)誤概率不超過(guò)0.01的前提下認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)多有關(guān)系?

下面臨界值表僅供參考:

0.05

0.01

0.001

3.841

6.635

10.828

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥x的解集;
(2)若對(duì)任意x∈R,f(x)≥0恒成立,求a的范圍;
(3)若方程f(x)=x有三個(gè)不同的解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù) ,其中

(1)試討論函數(shù) 的單調(diào)性;

(2)已知當(dāng) (其中 是自然對(duì)數(shù)的底數(shù))時(shí),在 上至少存在一點(diǎn) ,使 成立,求 的取值范圍;

(3)求證:當(dāng) 時(shí),對(duì)任意 ,,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[2019·武邑中學(xué)]已知關(guān)于的一元二次方程,

(1)若一枚骰子擲兩次所得點(diǎn)數(shù)分別是,,求方程有兩根的概率;

(2)若,,求方程沒(méi)有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=2x(1﹣x),f(﹣ )=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)設(shè),求的值;

(2)已知cos(75°+α),且﹣180°<α<﹣90°,求cos(15°﹣α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某幾何體的正視圖與側(cè)視圖都是邊長(zhǎng)為1的正方形,且體積為 .則該幾何體的俯視圖可以是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)O是坐標(biāo)原點(diǎn),橢圓C:x2+3y2=6的左右焦點(diǎn)分別為F1 , F2 , 且P,Q是橢圓C上不同的兩點(diǎn), (Ⅰ)若直線PQ過(guò)橢圓C的右焦點(diǎn)F2 , 且傾斜角為30°,求證:|F1P|、|PQ|、|QF1|成等差數(shù)列;
(Ⅱ)若P,Q兩點(diǎn)使得直線OP,PQ,QO的斜率均存在.且成等比數(shù)列.求直線PQ的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案