(2013•揭陽二模)對于集合M,定義函數(shù)fM(x)=
-1,x∈M
1,x∉M.
對于兩個集合A,B,定義集合A△B={x|fA(x)•fB(x)=-1}.已知A={2,4,6,8,10},B={1,2,4,8,12},則用列舉法寫出集合A△B的結(jié)果為
{1,6,10,12}
{1,6,10,12}
分析:在理解題意的基礎(chǔ)上,得到滿足fA(x)•fB(x)=-1的x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A},分別求出兩個集合后取并集.
解答:解:要使fA(x)•fB(x)=-1,
必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}
={6,10}∪{1,12}={1,6,10,12,},
所以A△B={1,6,10,12}.
故答案為{1,6,10,12}.
點評:本題是新定義題,考查了交、并、補集的混合運算,解答的關(guān)鍵是對新定義的理解,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•揭陽二模)在等差數(shù)列{an}中,首項a1=0,公差d≠0,若am=a1+a2+…+a9,則m的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•揭陽二模)如圖所示,C,D是半圓周上的兩個三等分點,直徑AB=4,CE⊥AB,垂足為E,BD與CE相交于點F,則BF的長為
2
3
3
2
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•揭陽二模)一個棱長為2的正方體沿其棱的中點截去部分后所得幾何體的三視圖如圖示,則該幾何體的體積為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•揭陽二模)在圖(1)所示的長方形ABCD中,AD=2AB=2,E、F分別為AD、BC的中點,M、N兩點分別在AF和CE上運動,且AM=EN=a(0<a<
2
)
.把長方形ABCD沿EF折成大小為θ的二面角A-EF-C,如圖(2)所示,其中θ∈(0,
π
2
]

(1)當θ=45°時,求三棱柱BCF-ADE的體積;
(2)求證:不論θ怎么變化,直線MN總與平面BCF平行;
(3)當θ=900a=
2
2
.時,求異面直線MN與AC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•揭陽二模)已知函數(shù)f(x)=
1
x-ln(x+1)
,則y=f(x)的圖象大致為(  )

查看答案和解析>>

同步練習冊答案