【題目】為了得到函數(shù)y=sin(2x+1)的圖象,只需把y=sin2x的圖象上所有的點(
A.向左平行移動 個單位長度
B.向右平行移動 個單位長度
C.向左平行移動1個單位長度
D.向右平行移動1個單位長度

【答案】A
【解析】解:∵y=sin(2x+1)=sin2(x+ ),∴把y=sin2x的圖象上所有的點向左平行移動 個單位長度,
即可得到函數(shù)y=sin(2x+1)的圖象,
故選:A.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識,掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C:的離心率為,且過點P(3,2).

(1)求橢圓C`的標準方程;

(2)設(shè)與直線OP(O為坐標原點)平行的直線交橢圓CA,B兩點,求證:直線PA,PB軸圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若在其定義域內(nèi)存在實數(shù),使得成立,則稱有“※點”

(1)判斷函數(shù)上是否有“※點”。并說明理由;

(2)若函數(shù)上有“※點”,求正實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.

(1)證明:BE⊥DC;
(2)求直線BE與平面PBD所成角的正弦值;
(3)若F為棱PC上一點,滿足BF⊥AC,求二面角F﹣AB﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列五個結(jié)論:

集合2,34,5,集合,若f,則對應關(guān)系f是從集合A到集合B的映射;

函數(shù)的定義域為,則函數(shù)的定義域也是;

存在實數(shù),使得成立;

是函數(shù)的對稱軸方程;

曲線和直線的公共點個數(shù)為m,則m不可能為1;

其中正確的有______寫出所有正確的序號

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:

①存在實數(shù),使; ②函數(shù)是偶函數(shù);

③若是第一象限的角,且,則;

④直線是函數(shù)的一條對稱軸;

⑤函數(shù)的圖像關(guān)于點成對稱中心圖形.

其中正確命題的序號是__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(3x+ ).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若α是第二象限角,f( )= cos(α+ )cos2α,求cosα﹣sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知P1(a1 , b1)與P2(a2 , b2)是直線y=kx+1(k為常數(shù))上兩個不同的點,則關(guān)于x和y的方程組 的解的情況是(
A.無論k,P1 , P2如何,總是無解
B.無論k,P1 , P2如何,總有唯一解
C.存在k,P1 , P2 , 使之恰有兩解
D.存在k,P1 , P2 , 使之有無窮多解

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】盒中有6只燈泡,其中2只次品,4只正品,有放回地從中任取兩次,每次取一只,試求下列事件的概率:
(1)取到的2只都是次品;
(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品.

查看答案和解析>>

同步練習冊答案