解答:(1)解:函數(shù)f(x)=x-ln(x+m),x∈(-m,+∞)連續(xù),且
f′(x)=1-,令f′(x)=0,得x=1-m當(dāng)x∈(-m,1-m)時(shí),f’(x)<0,f(x)為減函數(shù),f(x)>f(1-m)
當(dāng)x∈(1-m,+∞)時(shí),f’(x)>0,f(x)為增函數(shù),f(x)>f(1-m)
根據(jù)函數(shù)極值判別方法,f(1-m)=1-m為極小值,而且
對x∈(-m,+∞)都有f(x)≥f(1-m)=1-m
故當(dāng)整數(shù)m≤1時(shí),f(x)≥1-m≥0
(2)證明:由(1)知,當(dāng)整數(shù)m>1時(shí),f(1-m)=1-m<0,函數(shù)f(x)=x-ln(x+m),在[e
-m-m,1-m]上為連續(xù)減函數(shù).
f(e
-m-m)=e
-m-m-ln(e
-m-m+m)=e
-m>0
當(dāng)整數(shù)m>1時(shí),f(e
-m-m)與f(1-m)異號(hào),
由所給定理知,存在唯一的x
1∈(e
-m-m,1-m),使f(x
1)=0
而當(dāng)整數(shù)m>1時(shí),
f(e2m-m)=e2m-3m>(1+1)2m-3m>1+2m+-3m>0類似地,當(dāng)整數(shù)m>1時(shí),函數(shù)f(x)=x-ln(x+m),在[1-m,e
-m-m]上為連續(xù)增函數(shù)且f(1-m)與f(e
2m-m)異號(hào),由所給定理知,存在唯一的x
2∈[1-m,e
-m-m,],使f(x
2)=0
故當(dāng)m>1時(shí),方程f(x)=0在[e
-m-m,e
2m-m]內(nèi)有兩個(gè)實(shí)根.