【題目】已知橢圓的離心率為,過其右焦點(diǎn)與長軸垂直的直線與橢圓在第一象限交于點(diǎn),且.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓的左、右頂點(diǎn)分別為,,點(diǎn)是橢圓上的動(dòng)點(diǎn),且點(diǎn)與點(diǎn),不重合,直線,與直線分別交于點(diǎn),,求證:以線段為直徑的圓過定點(diǎn),.

【答案】(Ⅰ);(Ⅱ)證明見解析.

【解析】

(Ⅰ)將代入橢圓方程求出點(diǎn)縱坐標(biāo),得到,且等于,再由離心率和關(guān)系,即可求解;

(Ⅱ)設(shè)點(diǎn),求出線,的斜率,,由點(diǎn)的橢圓上,得到為定值,分別求出坐標(biāo),證明即可.

(Ⅰ)代入橢圓方程得,

,得

又因?yàn)?/span>,

,,,

所以橢圓的方程為.

(Ⅱ)設(shè)點(diǎn),

,

又設(shè)直線的斜率分別為,

,

所以,

∴直線,直線,

所以點(diǎn),,

,

所以以線段為直徑的圓過定點(diǎn),

同理,以線段為直徑的圓過定點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點(diǎn), 上異于,的點(diǎn), .

1)證明:平面平面;

2)若點(diǎn)為半圓弧上的一個(gè)三等分點(diǎn)(靠近點(diǎn))求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

1)求曲線的普通方程及直線的直角坐標(biāo)方程;

2)求曲線上的點(diǎn)到直線的距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線.

1)若拋物線的焦點(diǎn)到準(zhǔn)線的距離為4,點(diǎn),在拋物線上,線段的中點(diǎn)為,求直線的方程;

2)若圓以原點(diǎn)為圓心,1為半徑,直線分別相切,切點(diǎn)分別為,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,,求實(shí)數(shù)的值.

2)若,,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù),),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程是,等邊的頂點(diǎn)都在上,且點(diǎn),,按照逆時(shí)針方向排列,點(diǎn)的極坐標(biāo)為.

(Ⅰ)求點(diǎn),的直角坐標(biāo);

(Ⅱ)設(shè)上任意一點(diǎn),求點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),為常數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)當(dāng)直線與曲線相切時(shí),求出常數(shù)的值;

2)當(dāng)為曲線上的點(diǎn),求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市政府為了節(jié)約生活用電,計(jì)劃在本市試行居民生活用電定額管理,即確定一戶居民月用電量標(biāo)準(zhǔn)a,用電量不超過a的部分按平價(jià)收費(fèi),超出a的部分按議價(jià)收費(fèi)為此,政府調(diào)查了100戶居民的月平均用電量單位:度,以,,,,分組的頻率分布直方圖如圖所示.

根據(jù)頻率分布直方圖的數(shù)據(jù),求直方圖中x的值并估計(jì)該市每戶居民月平均用電量的值;

用頻率估計(jì)概率,利用的結(jié)果,假設(shè)該市每戶居民月平均用電量X服從正態(tài)分布

估計(jì)該市居民月平均用電量介于度之間的概率;

利用的結(jié)論,從該市所有居民中隨機(jī)抽取3戶,記月平均用電量介于度之間的戶數(shù)為,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率相等.橢圓的右焦點(diǎn)為F,過點(diǎn)F的直線與橢圓交于AB兩點(diǎn),射線與橢圓交于點(diǎn)C,橢圓的右頂點(diǎn)為D

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若的面積為,求直線的方程;

3)若,求證:四邊形是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案