(本小題滿(mǎn)分10分)選修4—1: 幾何證明選講
如圖,直線(xiàn)經(jīng)過(guò)⊙O上一點(diǎn),且,,⊙O交直線(xiàn)于.
(1)求證:直線(xiàn)是⊙O的切線(xiàn);
(2)若⊙O的半徑為3,求的長(zhǎng).
(Ⅰ)見(jiàn)解析(Ⅱ)5
解析試題分析:(Ⅰ)如圖,連接OC,
∵ OA=OB,CA=CB,∴ OC⊥AB,∴ AB是⊙O的切線(xiàn)
(Ⅱ)∵ ED是直徑, ∴ ∠ECD=90°,Rt△BCD中,
∵ tan∠CED=, ∴ = , ∵ AB是⊙O的切線(xiàn),
∴ ∠BCD=∠E,又 ∵ ∠CBD=∠EBC,∴ △BCD∽△BEC,
∴ == , 設(shè)BD=x,則BC=2x,
又BC2=BD·BE, ∴ =x·( x+6),
解得:x1=0,x2=2, ∵ BD=x>0, ∴ BD=2, ∴ OA=OB=BD+OD=3+2=5?
考點(diǎn):平面幾何的證明計(jì)算
點(diǎn)評(píng):應(yīng)用圓中的知識(shí)點(diǎn)及直線(xiàn)與圓相切相交的線(xiàn)段長(zhǎng)度關(guān)系推理計(jì)算
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖△為直角三角形,,以為直徑的圓交于點(diǎn),點(diǎn)是邊的中點(diǎn),連交圓于點(diǎn).
(Ⅰ)求證:、、、四點(diǎn)共圓;
(Ⅱ)設(shè),,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在邊長(zhǎng)為1的等邊△ABC中,D、E分別為邊AB、AC上的點(diǎn),若A關(guān)于直線(xiàn)DE的對(duì)稱(chēng)點(diǎn)A1恰好在線(xiàn)段BC上,
(1)①設(shè)A1B=x,用x表示AD;②設(shè)∠A1AB=θ∈[0º,60º],用θ表示AD
(2)求AD長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分10分)
如圖,四邊形ACBD內(nèi)接于圓O,對(duì)角線(xiàn)AC與BD相交于M,AC⊥BD,E是DC中點(diǎn)連結(jié)EM交AB于F,作OH⊥AB于HH,
求證:(1)EF⊥AB (2)OH=ME
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,從圓外一點(diǎn)作圓的兩條切線(xiàn),切點(diǎn)分別為,與交于點(diǎn),設(shè)為過(guò)點(diǎn)且不過(guò)圓心的一條弦,求證:四點(diǎn)共圓.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分10分)選修41:幾何證明選講
如圖,相交于A、B兩點(diǎn),AB是的直徑,過(guò)A點(diǎn)作的切線(xiàn)交于點(diǎn)E,并與BO1的延長(zhǎng)線(xiàn)交于點(diǎn)P,PB分別與、交于C,D兩點(diǎn).
求證:(1)PA·PD=PE·PC; (2)AD=AE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
((本小題滿(mǎn)分10分)選修4—1:幾何證明選講
如圖,已知AD是的外角的平分線(xiàn),交BC的延長(zhǎng)線(xiàn)于點(diǎn)D,延長(zhǎng)DA交的外接圓于點(diǎn)F,連結(jié)FB、FC
(I)求證:FB=FC;
(II)求證:FB2=FA·FD;
(III)若AB是外接圓的直徑,求AD的長(zhǎng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本大題10分)
如圖,為⊙的直徑,切⊙于點(diǎn),交⊙于點(diǎn),,點(diǎn)在上.求證:是⊙的切線(xiàn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com