已知數(shù)列{an}滿足a1=1,數(shù)學公式(n∈N*).
(1)設數(shù)學公式,求證:{bn-3}成等比數(shù)列;
(2)求數(shù)列{an}的通項公式an

解:(1)由,得
代入,

∴2bn+1=bn+3.…(5分)
∴2(bn+1-3)=bn-3,又,則b1-3=2≠0.…(7分)
∴{bn-3}是以2為首項,為公比的等比數(shù)列.…(8分)
(2)由(1)得,∴,…(10分)
.…(13分)
分析:(1)通過已知的關系式,推出bn+1與bn的關系,然后證明{bn-3}成等比數(shù)列;
(2)利用(1)求出bn,的表達式,然后轉化為數(shù)列{an}的通項公式an
點評:本題是中檔題,考查數(shù)列特征的判斷,考查邏輯推理能力,計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項和Sn;
(3)數(shù)列{an-bn}是否存在最大項,如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項公式
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習冊答案